1
|
Mark IT, Welker K, Erickson D, Johnson DR, Bathla G, Messina S, Farnsworth PJ, Van Gompel J. 7T MRI for Cushing Disease: A Single-Institution Experience and Literature Review. AJNR Am J Neuroradiol 2024; 45:971-976. [PMID: 38365424 DOI: 10.3174/ajnr.a8209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND AND PURPOSE Cushing disease is typically caused by a pituitary adenoma that frequently is small and challenging to detect on conventional MR imaging. High-field-strength 7T MR imaging can leverage increased SNR and contrast-to-noise ratios compared with lower-field-strength MR imaging to help identify small pituitary lesions. We aimed to describe our institutional experience with 7T MR imaging in patients with Cushing disease and perform a review of the literature. MATERIALS AND METHODS We performed a retrospective analysis of 7T MR imaging findings in patients with pathology-proved Cushing disease from a single institution, followed by a review of the literature on 7T MR imaging for Cushing disease. RESULTS Our institutional experience identified Cushing adenomas in 10/13 (76.9%) patients on 7T; however, only 5/13 (38.5%) lesions were discrete. Overall, the imaging protocols used were heterogeneous in terms of contrast dose as well as type of postcontrast T1-weighted sequences (dynamic, 2D versus 3D, and type of 3D sequence). From our institutional data, specific postgadolinium T1-weighted sequences were helpful in identifying a surgical lesion as follows: dynamic contrast-enhanced, 2/7 (28.6%); 2D FSE, 4/8 (50%); 3D sampling perfection with application-optimized contrasts by using different flip angle evolution (SPACE), 5/6 (83.3%); and 3D MPRAGE, 8/11 (72.7%). The literature review identified Cushing adenomas in 31/33 (93.9%) patients on 7T. CONCLUSIONS 7T MR imaging for pituitary lesion localization in Cushing disease is a new technique with imaging protocols that vary widely. Further comparative research is needed to identify the optimal imaging technique as well as assess the benefit of 7T over lower-field-strength MR imaging.
Collapse
Affiliation(s)
- Ian T Mark
- From the Department of Radiology (I.T.M., K.W., D.R.J., G.B., S.M., P.J.F.), Mayo Clinic, Rochester, Minnesota
| | - Kirk Welker
- From the Department of Radiology (I.T.M., K.W., D.R.J., G.B., S.M., P.J.F.), Mayo Clinic, Rochester, Minnesota
| | - Dana Erickson
- Department of Endocrinology (D.E.), Mayo Clinic, Rochester, Minnesota
| | - Derek R Johnson
- From the Department of Radiology (I.T.M., K.W., D.R.J., G.B., S.M., P.J.F.), Mayo Clinic, Rochester, Minnesota
| | - Girish Bathla
- From the Department of Radiology (I.T.M., K.W., D.R.J., G.B., S.M., P.J.F.), Mayo Clinic, Rochester, Minnesota
| | - Steven Messina
- From the Department of Radiology (I.T.M., K.W., D.R.J., G.B., S.M., P.J.F.), Mayo Clinic, Rochester, Minnesota
| | - Paul J Farnsworth
- From the Department of Radiology (I.T.M., K.W., D.R.J., G.B., S.M., P.J.F.), Mayo Clinic, Rochester, Minnesota
| | - Jamie Van Gompel
- Department of Neurosurgery (J.V.G.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
2
|
Castle-Kirszbaum M, Amukotuwa S, Fuller P, Goldschlager T, Gonzalvo A, Kam J, Kow CY, Shi MD, Stuckey S. MRI for Cushing Disease: A Systematic Review. AJNR Am J Neuroradiol 2023; 44:311-316. [PMID: 36759141 PMCID: PMC10187804 DOI: 10.3174/ajnr.a7789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/11/2022] [Indexed: 02/11/2023]
Abstract
BACKGROUND MR imaging is key in the diagnostic work-up of Cushing disease. The sensitivity of MR imaging in Cushing disease is not known nor is the prognostic significance of "MR imaging-negative" disease. PURPOSE Our aim was to determine the overall sensitivity and prognostic significance of MR imaging localization of Cushing disease. DATA SOURCES We performed a systematic review of the MEDLINE and PubMed databases for cohort studies reporting the sensitivity of MR imaging for the detection of adenomas in Cushing disease. STUDY SELECTION This study included 57 studies, comprising 5651 patients. DATA ANALYSIS Risk of bias was assessed using the methodological index for non-randomized studies criteria. Meta-analysis of proportions and pooled subgroup analysis were performed. DATA SYNTHESIS Overall sensitivity was 73.4% (95% CI, 68.8%-77.7%), and the sensitivity for microadenomas was 70.6% (66.2%-74.6%). There was a trend toward greater sensitivity in more recent studies and with the use of higher-field-strength scanners. Thinner-section acquisitions and gadolinium-enhanced imaging, particularly dynamic sequences, also increased the sensitivity. The use of FLAIR and newer 3D spoiled gradient-echo and FSE sequences, such as spoiled gradient-echo sequences and sampling perfection with application-optimized contrasts by using different flip angle evolutions, may further increase the sensitivity but appear complementary to standard 2D spin-echo sequences. MR imaging detection conferred a 2.63-fold (95% CI, 2.06-3.35-fold) increase in remission for microadenomas compared with MR imaging-negative Cushing disease. LIMITATIONS Pooled analysis is limited by heterogeneity among studies. We could not account for variation in image interpretation and tumor characteristics. CONCLUSIONS Detection on MR imaging improves the chances of curative resection of adenomas in Cushing disease. The evolution of MR imaging technology has improved the sensitivity for adenoma detection. Given the prognostic importance of MR imaging localization, further effort should be made to improve MR imaging protocols for Cushing disease.
Collapse
Affiliation(s)
- M Castle-Kirszbaum
- From the Departments of Neurosurgery (M.C.-K., T.G., J.K., C.Y.K.)
- Surgery (M.C.-K., T.G.), Monash Health, Melbourne, Australia
| | | | - P Fuller
- Endocrinology (P.F.)
- Hudson Institute (P.F.), Melbourne, Australia
| | - T Goldschlager
- From the Departments of Neurosurgery (M.C.-K., T.G., J.K., C.Y.K.)
- Surgery (M.C.-K., T.G.), Monash Health, Melbourne, Australia
| | - A Gonzalvo
- Department of Neurosurgery (A.G., J.K.), Austin Hospital, Melbourne, Australia
| | - J Kam
- From the Departments of Neurosurgery (M.C.-K., T.G., J.K., C.Y.K.)
- Department of Neurosurgery (A.G., J.K.), Austin Hospital, Melbourne, Australia
| | - C Y Kow
- From the Departments of Neurosurgery (M.C.-K., T.G., J.K., C.Y.K.)
| | - M D Shi
- Barwon Health (M.D.S.), Geelong, Australia
| | - S Stuckey
- Department of Radiology (S.S.), Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
3
|
Fajardo-Montañana C, Villar R, Gómez-Ansón B, Brea B, Mosqueira AJ, Molla E, Enseñat J, Riesgo P, Cardona-Arboniés J, Hernando O. Recommendations for the diagnosis and radiological follow-up of pituitary neuroendocrine tumours. ENDOCRINOL DIAB NUTR 2022; 69:744-761. [PMID: 36428207 DOI: 10.1016/j.endien.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/01/2021] [Indexed: 06/16/2023]
Abstract
Pituitary neuroendocrine tumours (PitNETs) constitute a heterogeneous group of tumours with a gradually increasing incidence, partly accounted for by more sensitive imaging techniques and more extensive experience in neuroradiology in this regard. Although most PitNETs are indolent, some exhibit aggressive behaviour, and recurrence may be seen after surgical removal. The changes introduced in the WHO classification in 2017 and terminological debates in relation to neuroendocrine tumours warrant an update of the guidelines for the diagnosis, preoperative and postoperative management, and follow-up of response to treatment of PitNETs. This multidisciplinary document, an initiative of the Neuroendocrinology area of the Sociedad Española de Endocrinología y Nutrición [Spanish Society of Endocrinology and Nutrition] (SEEN), focuses on neuroimaging studies for the diagnosis, prognosis and follow-up of PitNETs. The basic requirements and elements that should be covered by magnetic resonance imaging are described, and a minimum radiology report to aid clinicians in treatment decision-making is proposed. This work supplements the consensus between the Neuroendocrinology area of the SEEN and the Sociedad Española de Anatomía Patológica [Spanish Society of Pathology] (SEAP) for the pathological study of PitNETs.
Collapse
Affiliation(s)
| | - Rocío Villar
- Departamento de Endocrinología, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain
| | - Beatriz Gómez-Ansón
- Neurorradiología, Departamento de Radiodiagnóstico, Hospital Universitari Sant Pau, Barcelona, Spain
| | - Beatriz Brea
- Departamento de Radiología, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Antonio Jesús Mosqueira
- Departamento de Radiología, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain
| | - Enrique Molla
- Departamento de Radiología, Hospital Universitario de la Ribera, Alcira, Valencia, Spain
| | - Joaquín Enseñat
- Departamento de Neurocirugía, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Pedro Riesgo
- Departamento de Neurocirugía, Hospital Universitario de la Ribera, Alcira, Valencia, Spain
| | - Jorge Cardona-Arboniés
- Departamento de Medicina Nuclear, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Ovidio Hernando
- Departamento de Oncología Radioterápica, Centro Integral Oncológico Clara Campal, Madrid, Spain
| |
Collapse
|
4
|
Bashari WA, Gillett D, MacFarlane J, Powlson AS, Kolias AG, Mannion R, Scoffings DJ, Mendichovszky IA, Jones J, Cheow HK, Koulouri O, Gurnell M. Modern imaging in Cushing's disease. Pituitary 2022; 25:709-712. [PMID: 35666391 PMCID: PMC9587975 DOI: 10.1007/s11102-022-01236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 01/18/2023]
Abstract
Management of Cushing's disease is informed by dedicated imaging of the sella and parasellar regions. Although magnetic resonance imaging (MRI) remains the investigation of choice, a significant proportion (30-50%) of corticotroph tumours are so small as to render MRI indeterminate or negative when using standard clinical sequences. In this context, alternative MR protocols [e.g. 3D gradient (recalled) echo, with acquisition of volumetric data] may allow detection of tumors that have not been previously visualized. The use of hybrid molecular imaging (e.g. 11C-methionine positron emission tomography coregistered with volumetric MRI) has also been proposed as an additional modality for localizing microadenomas.
Collapse
Affiliation(s)
- W A Bashari
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - D Gillett
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - J MacFarlane
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - A S Powlson
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - A G Kolias
- Department of Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - R Mannion
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - D J Scoffings
- Department of Radiology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - I A Mendichovszky
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - J Jones
- Department of Radiology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - H K Cheow
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - O Koulouri
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - M Gurnell
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
5
|
White A, Junior de Andrade E, Kshettry VR, Sindwani R, Recinos PF. Preoperative Workup for Patients with Pituitary Lesions. Otolaryngol Clin North Am 2022; 55:233-246. [DOI: 10.1016/j.otc.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Fajardo-Montañana C, Villar R, Gómez-Ansón B, Brea B, Mosqueira AJ, Molla E, Enseñat J, Riesgo P, Cardona-Arboniés J, Hernando O. Recomendaciones sobre el diagnóstico y seguimiento radiológico de los tumores neuroendocrinos hipofisarios. ENDOCRINOL DIAB NUTR 2021. [DOI: 10.1016/j.endinu.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Senanayake R, Gillett D, MacFarlane J, Van de Meulen M, Powlson A, Koulouri O, Casey R, Bashari W, Gurnell M. New types of localization methods for adrenocorticotropic hormone-dependent Cushing's syndrome. Best Pract Res Clin Endocrinol Metab 2021; 35:101513. [PMID: 34045044 DOI: 10.1016/j.beem.2021.101513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The management of endogenous Cushing's syndrome (CS) typically involves two key steps: (i) confirmation of autonomous hypercortisolism and (ii) localization of the cause to guide treatment. Adrenocorticotropic hormone (ACTH)-dependent CS is most commonly due to a pituitary corticotrope tumor which may be so small as to evade detection on conventional magnetic resonance imaging (MRI). Although biochemical testing (e.g., corticotropin stimulation; dexamethasone suppression) can provide an indication of the likely origin of ACTH excess, bilateral inferior petrosal sinus catheterization offers greater accuracy to distinguish pituitary-driven CS [Cushing's Disease (CD)] from the ectopic ACTH syndrome [EAS, e.g., due to a bronchial or pancreatic neuroendocrine tumor (NET)]. In patients with CD, 40-50% may not have a pituitary adenoma (PA) readily visualized on standard clinical MRI. In these subjects, alternative MR sequences (e.g., dynamic, volumetric, fluid attenuation inversion recovery) and higher magnetic field strength (7T > 3T > 1.5T) may aid tumor localization but carry a risk of identifying coincidental (non-causative) pituitary lesions. Molecular imaging is therefore increasingly being deployed to detect small ACTH-secreting PA, with hybrid imaging [e.g., positron emission tomography (PET) combined with MRI] allowing precise anatomical localization of sites of radiotracer (e.g., 11C-methionine) uptake. Similarly, small ACTH-secreting NETs, missed on initial cross-sectional imaging, may be detected using PET tracers targeting abnormal glucose metabolism (e.g., 18F-fluorodeoxyglucose), somatostatin receptor (SSTR) expression (e.g., 68Ga-DOTATATE), amine precursor (e.g., 18F-DOPA) or amino acid (e.g., 11C-methionine) uptake. Therefore, modern management of ACTH-dependent CS should ideally be undertaken in specialist centers which have an array of cross-sectional and functional imaging techniques at their disposal.
Collapse
Affiliation(s)
- Russell Senanayake
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Daniel Gillett
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - James MacFarlane
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Merel Van de Meulen
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Andrew Powlson
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Olympia Koulouri
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Ruth Casey
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Waiel Bashari
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Mark Gurnell
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
8
|
MacFarlane J, Bashari WA, Senanayake R, Gillett D, van der Meulen M, Powlson AS, Kolias A, Koulouri O, Gurnell M. Advances in the Imaging of Pituitary Tumors. Endocrinol Metab Clin North Am 2020; 49:357-373. [PMID: 32741476 DOI: 10.1016/j.ecl.2020.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In most patients with pituitary adenomas magnetic resonance imaging (MRI) is essential to guide effective decision-making. T1- and T2-weighted sequences allow the majority of adenomas to be readily identified. Supplementary MR sequences (e.g. FLAIR; MR angiography) may also help inform surgery. However, in some patients MRI findings are 'negative' or equivocal (e.g. with failure to reliably identify a microadenoma or to distinguish postoperative change from residual/recurrent disease). Molecular imaging [e.g. 11C-methionine PET/CT coregistered with volumetric MRI (Met-PET/MRCR)] may allow accurate localisation of the site of de novo or persistent disease to guide definitive treatment (e.g. surgery or radiosurgery).
Collapse
Affiliation(s)
- James MacFarlane
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Waiel A Bashari
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Russell Senanayake
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Daniel Gillett
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK; Department of Nuclear Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Merel van der Meulen
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Andrew S Powlson
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Angelos Kolias
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge & Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Olympia Koulouri
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Mark Gurnell
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
9
|
Nishioka H, Yamada S. Cushing's Disease. J Clin Med 2019; 8:jcm8111951. [PMID: 31726770 PMCID: PMC6912360 DOI: 10.3390/jcm8111951] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
In patients with Cushing's disease (CD), prompt diagnosis and treatment are essential for favorable long-term outcomes, although this remains a challenging task. The differential diagnosis of CD is still difficult in some patients, even with an organized stepwise diagnostic approach. Moreover, despite the use of high-resolution magnetic resonance imaging (MRI) combined with advanced fine sequences, some tumors remain invisible. Surgery, using various surgical approaches for safe maximum tumor removal, still remains the first-line treatment for most patients with CD. Persistent or recurrent CD after unsuccessful surgery requires further treatment, including repeat surgery, medical therapy, radiotherapy, or sometimes, bilateral adrenalectomy. These treatments have their own advantages and disadvantages. However, the most important thing is that this complex disease should be managed by a multidisciplinary team with collaborating experts. In addition, a personalized and individual-based approach is paramount to achieve high success rates while minimizing the occurrence of adverse events and improving the patients' quality of life. Finally, the recent new insights into the pathophysiology of CD at the molecular level are highly anticipated to lead to the introduction of more accurate diagnostic tests and efficacious therapies for this devastating disease in the near future.
Collapse
Affiliation(s)
- Hiroshi Nishioka
- Department of Hypothalamic and Pituitary surgery, Toranomon Hospital, Tokyo 1058470, Japan;
- Okinaka Memorial Institute for Medical Research, Tokyo 1058470, Japan
| | - Shozo Yamada
- Hypothalamic and Pituitary Center, Moriyama Neurological Center Hospital, Tokyo 1340081, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo 1058470, Japan
- Correspondence: ; Tel.: +81-336-751-211
| |
Collapse
|
10
|
Bashari WA, Senanayake R, Fernández-Pombo A, Gillett D, Koulouri O, Powlson AS, Matys T, Scoffings D, Cheow H, Mendichovszky I, Gurnell M. Modern imaging of pituitary adenomas. Best Pract Res Clin Endocrinol Metab 2019; 33:101278. [PMID: 31208872 DOI: 10.1016/j.beem.2019.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decision-making in pituitary disease is critically dependent on high quality imaging of the sella and parasellar region. Magnetic resonance imaging (MRI) is the investigation of choice and, for the majority of patients, combined T1 and T2 weighted sequences provide the information required to allow surgery, radiotherapy (RT) and/or medical therapy to be planned and long-term outcomes to be monitored. However, in some cases standard clinical MR sequences are indeterminate and additional information is needed to help inform the choice of therapy for a pituitary adenoma (PA). This article reviews current recommendations for imaging of PA, examines the potential added value that alternative MR sequences and/or CT can offer, and considers how the use of functional/molecular imaging might allow definitive treatment to be recommended for a subset of patients who would otherwise be deemed unsuitable for (further) surgery and/or RT.
Collapse
Affiliation(s)
- Waiel A Bashari
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Russell Senanayake
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Antía Fernández-Pombo
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK; Division of Endocrinology and Nutrition, University Clinical Hospital of Santiago de Compostela, Spain
| | - Daniel Gillett
- Cambridge Endocrine Molecular Imaging Group, Department of Nuclear Medicine, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Olympia Koulouri
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Andrew S Powlson
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Tomasz Matys
- Cambridge Endocrine Molecular Imaging Group, Department of Radiology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Daniel Scoffings
- Cambridge Endocrine Molecular Imaging Group, Department of Radiology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Heok Cheow
- Cambridge Endocrine Molecular Imaging Group, Department of Nuclear Medicine, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK; Cambridge Endocrine Molecular Imaging Group, Department of Radiology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Iosif Mendichovszky
- Cambridge Endocrine Molecular Imaging Group, Department of Nuclear Medicine, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK; Cambridge Endocrine Molecular Imaging Group, Department of Radiology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Mark Gurnell
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|