1
|
Zhao P, Li T, Wei D, Wu D, Wang L, Duan Z. Synthesis, Photophysical and Electrochemical Properties of Spiro-Phosphonium Compounds. J Org Chem 2024; 89:11109-11118. [PMID: 39052854 DOI: 10.1021/acs.joc.3c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A series of spiro-phosphonium compounds have been synthesized by copper-mediated coupling reaction of phosphacyclic compounds with alkynes. Their photophysical properties are tuned by varying substituents and exhibit different luminescent colors from blue to green, and finally, yellow. The fluorescence quantum efficiency of diethyl spiro-xanthenebenzophosphole 3aa in solid and liquid states reached 31% and 76%, respectively. Diphenyl spiro-xanthenebenzophosphole 3ad displayed relatively low cytotoxicity toward lung cancer cells A549 and was able to effectively penetrate the cell membrane and maintain strong staining. Moreover, density functional theory (DFT) and time-dependent DFT calculations have been performed to explore the origin of their photophysical properties.
Collapse
Affiliation(s)
- Peng Zhao
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Tong Li
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Donghui Wei
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Di Wu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Wang
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Zheng Duan
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Hollister KK, Wentz KE, Gilliard RJ. Redox- and Charge-State Dependent Trends in 5, 6, and 7-Membered Boron Heterocycles: A Neutral Ligand Coordination Chemistry Approach to Boracyclic Cations, Anions, and Radicals. Acc Chem Res 2024; 57:1510-1522. [PMID: 38708938 DOI: 10.1021/acs.accounts.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
ConspectusBoron heterocycles represent an important subset of heteroatom-incorporated rings, attracting attention from organic, inorganic, and materials chemists. The empty pz orbital at the boron center makes them stand out as quintessential Lewis acidic molecules, also serving as a means to modulate electronic structure and photophysical properties in a facile manner. As boracycles are ripe for extensive functionalization, they are used in catalysis, chemical biology, materials science, and continue to be explored as chemical synthons for conjugated materials and reagents. Neutral boron(III)-incorporated polycyclic molecules are some of the most studied types of boracycles, and understanding their redox transformations is important for applications relying on electron transfer and charge transport. While relevant redox species can often be electrochemically observed, it remains challenging to isolate and characterize boracycles where the boron center and/or polycyclic skeleton have been chemically reduced.We describe our recent work isolating 5-, 6-, and 7-membered boracyclic radicals, anions, and cations, focusing on stabilization strategies, ligand-mediated bonding situations, and reactivity. We present a versatile neutral ligand coordination chemistry approach that permits the transformation of boracycles from potent electrophiles to powerful nucleophilic heterocycles that facilitate diverse electron transfer and bond activation chemistry. Although there are a wide range of suitable stabilizing ligands, we have employed both diamino-N-heterocyclic carbenes (NHCs) and cyclic(alkyl)(amino) carbenes (CAACs), which led to boracycles with tunable electronic structures and aromaticity trends. We highlight successful isolation of borafluorene radicals and demonstrate their reversible redox behavior, undergoing oxidation to the cation or reduction to the anion. The borafluorene anion is a chemical synthon that has been used to prepare boryl main-group and transition-metal bonds, luminescent oxabora-spirocycles, borafluorenate-crown ethers, and CO-releasing molecules via carbon dioxide activation. We expanded to 6-membered boracycles and characterized neutral bis(NHC-supported 9-boraphenanthrene)s and the corresponding bis(CAAC-stabilized 9-boraphenanthrene) biradical. We detail the interconvertible multiredox states of boraphenalene, where the boraphenalenyl radical, anion, and cation mimic the charge-states of the all-hydrocarbon analogue. Reactivity studies of the boraphenalenyl anion displayed unusual nucleophilic reactivity at multiple sites on the periphery of the boraphenalenyl tricyclic scaffold. Reduced borepins, 7-membered boron containing heterocycles, have also been isolated. We used a stepwise one-pot synthesis combining the halo-borepin precursor, CAAC, and KC8 to afford the monomeric borepin radicals and anions. The π-system was extended to contain two borepin rings fused in a pentacyclic scaffold, which permitted isolation of diborepin biradicals and a diborepin containing a dibora-quinone core.Our goal is to provide a guide explaining the current structure-function trends and isolation strategies for redox-active boron-incorporated polycyclic molecules to initiate the rational design and use of these types of compounds across a vast chemical space.
Collapse
Affiliation(s)
- Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Kelsie E Wentz
- Department of Chemistry, Johns Hopkins University, Remson Hall, 3400 N Charles Street, Baltimore, Maryland 21218-2625, United States
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
3
|
Hollister KK, Molino A, Jones N, Le VV, Dickie DA, Cafiso DS, Wilson DJD, Gilliard RJ. Unlocking Biradical Character in Diborepins. J Am Chem Soc 2024; 146:6506-6515. [PMID: 38420913 DOI: 10.1021/jacs.3c08297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Systems that possess open- and closed-shell behavior attract significant attention from researchers due to their inherent redox and charge transport properties. Herein, we report the synthesis of the first diborepin biradicals. They display tunable biradical character based on the steric and electronic profile of the stabilizing ligand and the resulting geometric deviation of the diborepin core from planarity. While there are numerous all-carbon-based biradical systems, boron-based biradical compounds are comparatively rare, particularly ones in which the radical sites are disjointed. Calculations using density functional theory (DFT) and multireference methods demonstrate that the fused diborepin scaffold exhibits high biradical character, up to 95%. Use of a nonsterically demanding diaminocarbene promotes the planarization of the pentacyclic framework, resulting in the synthetic realization of a diborepin containing a dibora-quinoidal core, which possesses a closed-shell ground state and thermally accessible triplet state. The biradicals were structurally authenticated and characterized by both solution and solid-state electron paramagnetic resonance (EPR) spectroscopy. Half-field transitions were observed at low temperatures (about 170 K), confirming the presence of the triplet state. Initial reactivity studies of the biradicals led to the isolation and structural characterization of bis(borepin hydride) and bis(borepin dianion).
Collapse
Affiliation(s)
- Kimberly K Hollister
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Nula Jones
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - VuongVy V Le
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
4
|
Li X, Liu Z, Li C, Gao R, Qi Y, Ren Y. Synthesis and Photophysical Properties of Carbazole-Functionalized Diazaphosphepines via Sequent P-N Chemistry. J Org Chem 2023; 88:13678-13685. [PMID: 37691267 DOI: 10.1021/acs.joc.3c01351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Chemical structure tunability of organic π-conjugated molecules (OCMs) is highly appealing for fine-tuning the optoelectronic properties. Herein, we report a new series of carbazole-functionalized diazaphosphepines (DPP-CBZs) via one-pot phosphorus-nitrogen (P-N) chemistry. The one-pot synthesis harnessed the mild and selective P-N chemistry that successively installed carbazole moieties and seven-membered heterocycles at one P-center. Single-crystal structure studies revealed the tweezer-like structures for 1PO, 2PO, and 3PO that maintained the intramolecular donor-acceptor interactions between [d]-aryl moieties and carbazole. DPP-CBZs exhibited a more twisted central-diazaphosphepine ring compared with the reference molecules (1-3MO without carbazole group). DPP-CBZs with strong electron-accepting [d]-Ars generally showed lower photoluminescence quantum yields (PLQYs) than those of the reference molecules, which is probably due to the intramolecular charge transfer (ICT) from electron-donating carbazole to electron-withdrawing [d]-Ars. Upon the oxidation of the P-centers, PLQYs of DPP-CBZs increased. Furthermore, photophysical studies and theoretical studies suggested that the carbazole group had a strong impact on the structures of DPP-CBZs. As a proof of concept, we showed that grinding the mixture of 1PO as the electron-donating tweezer and benzene-1,2,4,5-tetracarbonitrile (BzCN) as the electron acceptor induced the formation of the CT complex.
Collapse
Affiliation(s)
- Xinyu Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaoxin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Can Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rong Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanpeng Qi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscop, ShanghaiTech University, Shanghai 201210, China
| | - Yi Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Guo Z, Wu D, Wang L, Duan Z. BF 3•Et 2O Promoted Dienone-Phenol Type Rearrangement to Synthesize Phosphepine with Aggregation Induced Luminescence (AIE) Effect. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Koner A, Sergeieva T, Morgenstern B, Andrada DM. A Cyclic Iminoborane-NHC Adduct: Synthesis, Reactivity, and Bonding Analysis. Inorg Chem 2021; 60:14202-14211. [PMID: 34374528 DOI: 10.1021/acs.inorgchem.1c01583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lewis-base coordinated iminoborane adducts, in contrast to their isoelectronic analogue imines, remain largely unexplored given the lack of efficient synthetic strategies for generating robust compounds. Herein, we report the preparation of a cyclic amino iminoborane carbene complex 2 obtained in quantitative yield by adding NHC to the 1,8-(trimethylsilyl)aminonaphthalene complex of boron 1 to induce the elimination of trimethylsilyl chloride (TMSCl). The iminoborane-NHC adduct 2 shows unprecedented thermal stability both in the solid and solution phases, due to the rigid, pre-established geometry of the 1,8-diaminonaphthalene scaffold. Theoretical calculations reveal an exceptionally strong iminoborane-NHC bond as a consequence of the enhanced boron-center acidity in combination with the lower steric and electronic shielding. We show that the chemical bond can be understood as donor-acceptor interaction, leading to a different kind of electronic situation of the B═N π-bond. The high conjugation between the pz-lone pair of the tricoordinated sp2 hybridized N atom and the B═N π-system results in a particularly long B═N double bond distance. Taking advantage of the pendant lone pair of the dicoordinated sp2 hybridized N atom, the iminoborane-NHC adduct gives access to NHC-stabilized borenium cation 3 through the reaction with trimethylsilyl triflate (Me3SiOTf) or to the gallium adduct 4 by reacting with GaCl3. Incorporating an iminoborane functional group into a π-conjugated system brings a new bonding situation for broadening the scope of BN-containing polyaromatic systems.
Collapse
Affiliation(s)
- Abhishek Koner
- Inorganic and Computational Chemistry Group, Universität des Saarlandes, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Tetiana Sergeieva
- Inorganic and Computational Chemistry Group, Universität des Saarlandes, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Bernd Morgenstern
- Inorganic and Computational Chemistry Group, Universität des Saarlandes, Campus C4.1, D-66123 Saarbrücken, Germany
| | - Diego M Andrada
- Inorganic and Computational Chemistry Group, Universität des Saarlandes, Campus C4.1, D-66123 Saarbrücken, Germany
| |
Collapse
|