1
|
Li R, Wang Z, Zhang Y, Tan Z, Xu D. Iodine‐Catalyzed Oxidative Coupling of Indolin‐2‐ones with Indoles: Synthesis of 3,3‐Disubstituted Oxindole Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202200558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruo‐Pu Li
- National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Tianjin 300071 China
| | - Zheng‐Lin Wang
- National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Tianjin 300071 China
| | - Yun‐Hao Zhang
- National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Tianjin 300071 China
| | - Zhi‐Yu Tan
- National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Tianjin 300071 China
| | - Da‐Zhen Xu
- National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
2
|
Chen XY, Yang S, Ren BP, Shi L, Lin DZ, Zhang H, Liu HY. Copper porphyrin-catalyzed cross dehydrogenative coupling of alkanes with carboxylic acids: Esterification and decarboxylation dual pathway. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Lai H, Xu J, Lin J, Zha D. Copper-promoted direct amidation of isoindolinone scaffolds by sodium persulfate. Org Biomol Chem 2021; 19:7621-7626. [PMID: 34308463 DOI: 10.1039/d1ob01054a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isoindolinones are ubiquitous structural motifs in natural products and pharmaceuticals. Establishing an efficient method for structural modification of isoindolinones could significantly facilitate new drug development. Herein, we describe copper-promoted direct amidation of isoindolinone scaffolds mediated by sodium persulfate. The method exhibits mild reaction conditions and high site-selectivity, and enables the structural modification of the drug indobufen ester with various amides with yields of 49 to 98%. It is also gram-scalable. Additionally, the reaction mechanism appears to involve a radical and a carbocationic pathway.
Collapse
Affiliation(s)
- Huifang Lai
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | - Jiexin Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | - Jin Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China.
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China. and Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, China
| |
Collapse
|
4
|
Chen J, Zhang Y, Chen X, Dai S, Bao Z, Yang Q, Ren Q, Zhang Z. Cooperative Interplay of Brønsted Acid and Lewis Acid Sites in MIL-101(Cr) for Cross-Dehydrogenative Coupling of C-H Bonds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10845-10854. [PMID: 33648335 DOI: 10.1021/acsami.0c20369] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cross-dehydrogenative coupling (CDC) is an effective tool for carbon-carbon bond formation in chemical synthesis. Herein, we report a metal-organic framework (MOF) possessing dual Lewis acidic Cr sites and sulfonic acid sites (MIL-101(Cr)-SO3H) as an efficient catalytic material for direct cross-coupling of xanthene and different nucleophiles using O2 as the oxidant. The highly porous structure of MIL-101(Cr)-SO3H enables the free access of reactants to the catalytic active sites inside MOF pores. Kinetic studies indicated that the Cr sites of MOF accelerate the rate-limiting autoxidation reaction of xanthene, which synergistically work with the sulfonic acid group on MOF ligands in promoting the CDC reactions. Besides, the catalytic system shows excellent functional group compatibility, and a variety of valuable xanthene derivatives were synthesized with satisfactory yields. Furthermore, MIL-101(Cr)-SO3H can be reused and its catalytic activity and crystal structure remain after six consecutive runs.
Collapse
Affiliation(s)
- Jingwen Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R.China
| | - Yuanyuan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R.China
| | - Xiaoling Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Siyun Dai
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R.China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R.China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R.China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R.China
| |
Collapse
|