1
|
Kojima Y, Nishii Y, Hirano K. Asymmetric Synthesis of SCF 3-Substituted Alkylboronates by Copper-Catalyzed Hydroboration of 1-Trifluoromethylthioalkenes. Angew Chem Int Ed Engl 2024; 63:e202403337. [PMID: 38472112 DOI: 10.1002/anie.202403337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
A synthetic method for preparation of optically active trifluoromethylthio (SCF3) compounds by a copper-catalyzed regio- and enantioselective hydroboration of 1-trifluoromethylthioalkenes with H-Bpin has been developed. The enantioselective hydrocupration of an in situ generated CuH species and subsequent boration reaction generate a chiral SCF3-containing alkylboronate, of which Bpin moiety can be further transformed to deliver various optically active SCF3 molecules. Computational studies suggest that the SCF3 group successfully controls the regioselectivity in the reaction.
Collapse
Affiliation(s)
- Yuki Kojima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Mudshinge SR, Yang Y, Xu B, Hammond GB, Lu Z. Gold (I/III)-Catalyzed Trifluoromethylthiolation and Trifluoromethylselenolation of Organohalides. Angew Chem Int Ed Engl 2022; 61:e202115687. [PMID: 35061930 PMCID: PMC10854012 DOI: 10.1002/anie.202115687] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 01/17/2023]
Abstract
The first C-SCF3 /SeCF3 cross-coupling reactions using gold redox catalysis [(MeDalphos)AuCl], AgSCF3 or Me4 NSeCF3 , and organohalides as substrates are reported. The new methodology enables a one-stop shop synthesis of aryl/alkenyl/alkynyl trifluoromethylthio- and selenoethers with a broad substrate scope (>60 examples with up to 97 % isolated yield). The method is scalable, and its robustness is evidenced by the late-stage functionalization of various bioactive molecules, which makes this reaction an attractive alternative in the synthesis of trifluoromethylthio- and selenoethers for pharmaceutical and agrochemical research and development.
Collapse
Affiliation(s)
- Sagar R Mudshinge
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Yuhao Yang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai, 201620, China
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Zhichao Lu
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
3
|
Wang H, Yao Y, Zhang Z, Huang Y, Weng Z. Synthesis of 2,3-Bis(trifluoromethylseleno) Indoles through an Oxidative Copper-Mediated Domino Reaction. J Org Chem 2022; 87:3605-3612. [PMID: 35166556 DOI: 10.1021/acs.joc.1c03156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An oxidative copper-mediated double trifluoromethylselenolation of terminal 2-alkynylanilines using [(bpy)CuSeCF3]2 is reported, providing a moderately efficient and convenient approach to 2,3-bis(trifluoromethylseleno)indoles. Mechanistic studies show that a cascade sequence of oxidation, trifluoromethylselenolation, 5-endo-dig cyclization, and elimination is involved in this transformation.
Collapse
Affiliation(s)
- Hui Wang
- Fujian Engineering Research Center of New Chinese Lacquer Material, Ocean College, Minjiang University, Fuzhou 350108, China.,Key Laboratory of Molecule Synthesis and Function Discovery and Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yunfei Yao
- Key Laboratory of Molecule Synthesis and Function Discovery and Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zipeng Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery and Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yangjie Huang
- Fujian Engineering Research Center of New Chinese Lacquer Material, Ocean College, Minjiang University, Fuzhou 350108, China
| | - Zhiqiang Weng
- Fujian Engineering Research Center of New Chinese Lacquer Material, Ocean College, Minjiang University, Fuzhou 350108, China.,Key Laboratory of Molecule Synthesis and Function Discovery and Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
4
|
Mudshinge SR, Yang Y, Xu B, Hammond GB, Lu Z. Gold (I/III)‐Catalyzed Trifluoromethylthiolation and Trifluoromethylselenolation of Organohalides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sagar R. Mudshinge
- Department of Chemistry University of Louisville Louisville KY 40292 USA
| | - Yuhao Yang
- Department of Chemistry University of Louisville Louisville KY 40292 USA
| | - Bo Xu
- College of Chemistry Chemical Engineering and Biotechnology Donghua University 2999 North Renmin Lu Shanghai 201620 China
| | - Gerald B. Hammond
- Department of Chemistry University of Louisville Louisville KY 40292 USA
| | - Zhichao Lu
- Department of Chemistry University of Louisville Louisville KY 40292 USA
| |
Collapse
|
5
|
Xiao Y, Jia Y, Huang J, Li X, Zhou Z, Zhang J, Jiang M, Zhou X, Jiang Z, Yang Z. Synthesis of SCF
3
‐Substituted Sulfonium Ylides from Sulfonium Salts or α‐Bromoacetic Esters. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yushan Xiao
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Yimin Jia
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Jinfeng Huang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Xiangyu Li
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Zhiwen Zhou
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Jing Zhang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Mou Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Innovative Academy of Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 People's Republic of China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Innovative Academy of Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 People's Republic of China
| | - Zhong‐Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals School of Pharmaceutical Sciences Wuhan University Wuhan 430071 People's Republic of China
| |
Collapse
|
6
|
Zhang H, Wang Q, Wang Y, Yuan Z, Gao F, Britton R. Selective Trifluoromethylthiolation of Unactivated C(sp
3
)−H Bonds Enabled by Excited Ketones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Han Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Qing Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical isotope research center School of basic medical sciences Cheeloo College of Medicine Shandong University Jinan Shandong 250012 P. R. China
| | - Robert Britton
- Department of Chemistry Simon Fraser University Burnaby British Columbia V5 A 1S6 Canada
| |
Collapse
|
7
|
Sumii Y, Sasaki K, Matsubara O, Shibata N. Synthesis of Difluoromethanesulfinate Esters by the Difluoromethanesulfinylation of Alcohols. Org Lett 2021; 23:2777-2782. [PMID: 33739122 DOI: 10.1021/acs.orglett.1c00688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report the first synthesis of difluoromethanesulfinate esters via the direct difluoromethanesulfinylation of alcohols with HCF2SO2Na/Ph2P(O)Cl. Primary, secondary, and tertiary alcohols were converted to the corresponding difluoromethanesulfinate esters in good to excellent yields under mild conditions. The late-stage functionalization of complexed biologically active natural products was also demonstrated. The method was extended to the trifluoromethanesulfinylation of alcohols using CF3SO2Na in the presence of a catalytic amount of Me3SiCl to provide trifluoromethanesulfinate esters.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Kenta Sasaki
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Okiya Matsubara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Norio Shibata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan.,Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan.,Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
| |
Collapse
|
8
|
Recent Advances in the Synthesis of Sulfides, Sulfoxides and Sulfones via C-S Bond Construction from Non-Halide Substrates. Catalysts 2020. [DOI: 10.3390/catal10111339] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The construction of a C-S bond is a powerful strategy for the synthesis of sulfur containing compounds including sulfides, sulfoxides, and sulfones. Recent methodological developments have revealed lots of novel protocols for C-S bond formation, providing easy access to sulfur containing compounds. Unlike traditional Ullmann typed C-S coupling reaction, the recently developed reactions frequently use non-halide compounds, such as diazo compounds and simple arenes/alkanes instead of aryl halides as substrates. On the other hand, novel C-S coupling reaction pathways involving thiyl radicals have emerged as an important strategy to construct C-S bonds. In this review, we focus on the recent advances on the synthesis of sulfides, sulfoxides, and sulfones from non-halide substrates involving C-S bond construction.
Collapse
|