1
|
Wang HY, Liu ZY, Wang LX, Shao DY, Dong FY, Shen YB, Qiu B, Xiao J, An XD. Quinoline as an Intramolecular Hydride Shuttle in the Deoxygenative Coupling Reaction of Alcohol and the Inert Methyl C(sp 3)-H Bond. J Org Chem 2024; 89:18406-18411. [PMID: 39651762 DOI: 10.1021/acs.joc.4c02269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Reported herein is the C(sp3)-C(sp3) bond-forming at an unactivated C(sp3)-H bond via hydride transfer-initiated deoxygenative coupling reactions. Various polycyclic hydroquinolines were provided under metal-free conditions with excellent diastereoselectivity. Mechanistic study revealed that quinoline served as an intramolecular hydride shuttle to achieve the hydride abstraction and release in order. This methodology not only provides a practical strategy for direct deoxygenative coupling for the C(sp3)-C(sp3) bond-forming but also develops a new reaction type involving quinoline-enabled hydride transfer.
Collapse
Affiliation(s)
- Hui-Yun Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhen-Yuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Long-Xue Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Da-Ying Shao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Feng-Ying Dong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yao-Bin Shen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Bin Qiu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-De An
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
2
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
3
|
Zhou P, Li Y, XU T. Molybdenum-Catalyzed Cross-Coupling of Benzyl Alcohols: Direct C–OH Bond Transformation via [2 + 2]-Type Addition and Elimination. Org Lett 2022; 24:4218-4223. [DOI: 10.1021/acs.orglett.2c01537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pan Zhou
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China
| | - Yuqiang Li
- College of Chemistry and Chemical Engineering, Central South University, 932 South Lushan Road, Changsha 410083, P. R. China
| | - Tao XU
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China
| |
Collapse
|
4
|
Suga T, Takada R, Shimazu S, Sakata M, Ukaji Y. Highly ( E)-Selective Trisubstituted Alkene Synthesis by Low-Valent Titanium-Mediated Homolytic Cleavage of Alcohol C-O Bond. J Org Chem 2022; 87:7487-7493. [PMID: 35609287 DOI: 10.1021/acs.joc.2c00246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ti-mediated homolytic C-O bond cleavage was useful for cascade radical-ionic reactions. Benzyl alcohols treated with TiCl4(col) (col = 2,4,6-collidine) and Mn powder generated the corresponding benzyl radicals; in addition, their reaction with 2-carboxyallyl acetates and the subsequent elimination of the acetoxy group yielded α,β-unsaturated carbonyl compounds with exclusive (E)-stereoselectivity. The simplicity of the procedure and its wide substrate scope represent a solution to the drawbacks associated with the reactions.
Collapse
Affiliation(s)
- Takuya Suga
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Ryusei Takada
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Shoma Shimazu
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Mizuki Sakata
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Yutaka Ukaji
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
5
|
Lin Q, Ma G, Gong H. Ni-Catalyzed Formal Cross-Electrophile Coupling of Alcohols with Aryl Halides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Quan Lin
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Guobin Ma
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| |
Collapse
|
6
|
Tian M, Liu M. The exploration of deoxygenation reactions for alcohols and derivatives using earth-abundant reagents. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In Earth matter evolution, the deoxygenation process plays a central role as plant and animal remains, which are composed by highly oxygenated molecules, were gradually deoxygenated into hydrocarbons to give fossil fuels deep in the Earth crust. The understanding of this process is becoming crucial to the entire world and to the sustainable development of mankind. This review provides a brief summary of the extensive deoxygenation research under mild, potentially sustainable conditions. We also summarize some challenges and opportunities for potential deoxygenation reactions in the future.
Collapse
Affiliation(s)
- Miao Tian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , 222 Tianshui South Road, Chengguan Dist. , Lanzhou , Gansu , 730000 , China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University , Shenyang , Liaoning , 110034 , China
| | - Mingxin Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , 222 Tianshui South Road, Chengguan Dist. , Lanzhou , Gansu , 730000 , China
- Department of Chemistry and FRQNT Centre in Green Chemistry and Catalysis , McGill University , 801 Sherbrooke Ouest , Montreal , QC , H3A 0B8 , Canada
| |
Collapse
|