1
|
Jiang YY, Fan X, Li Y, Ji GC, Liu P, Bi S. Computational Study Revealing the Mechanistic Origin of Distinct Performances of P(O)-H/OH Compounds in Palladium-Catalyzed Hydrophosphorylation of Terminal Alkynes: Switchable Mechanisms and Potential Side Reactions. J Org Chem 2022; 87:14673-14684. [PMID: 36226799 DOI: 10.1021/acs.joc.2c02002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pd-catalyzed hydrophosphorylation of alkynes with P(O)-H compounds provided atom-economical and oxidant-free access to alkenylphosphoryl compounds. Nevertheless, the applicable P(O)-H substrates were limited to those without a hydroxyl group except H2P(O)OH. It is also puzzling that Ph2P(O)OH could co-catalyze the reaction to improve Markovnikov selectivity. Herein, a computational study was conducted to elucidate the mechanistic origin of the phenomena described above. It was found that switchable mechanisms influenced by the acidity of substrates and co-catalysts operate in hydrophosphorylation. In addition, potential side reactions caused by the protonation of PdII-alkenyl intermediates with P(O)-OH species were revealed. The regeneration of an active Pd(0) catalyst from the resulting Pd(II) complexes is remarkably slower than the hydrophosphonylation, while the downstream reactions, if possible, would lead to phosphorus 2-pyrone. Further analysis indicated that the side reactions could be suppressed by utilizing bulky substrates or ligands or by decreasing the concentration of P(O)-OH species. The presented switchable mechanisms and side reactions shed light on the co-transformations of P(O)-H and P-OH compounds in the Pd-catalyzed hydrophosphorylation of alkynes, clarify the origin of the distinct performances of P(O)-H/OH compounds, and provide theoretical clues for expanding the applicable substrate scope of hydrophosphorylation and synthesizing cyclic alkenylphosphoryl compounds.
Collapse
Affiliation(s)
- Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Xia Fan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Yu Li
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Guo-Cui Ji
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| |
Collapse
|
2
|
Guo S, Yan W, Zhang Z, Huang Z, Guo Y, Liang Z, Li S, Fu Z, Cai H. Nickel-Catalyzed 1,1-Dihydrophosphinylation of Nitriles with Phosphine Oxides. J Org Chem 2022; 87:5522-5529. [PMID: 35468296 DOI: 10.1021/acs.joc.1c02815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Treatment of phosphine oxides with nitriles usually furnishes 1,2-dihydrophosphinylation products. Herein, we developed a nickel-catalyzed 1,1-dihydrophosphinylation of nitriles with phosphine oxides to access primary amines. This reaction proceeded smoothly under very mild conditions. A series of nitriles and phosphine oxides were compatible with this conversion, and the desired products were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Shengmei Guo
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Wenjie Yan
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Zhebin Zhang
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Zhenjun Huang
- The Second Clinical Medical College, Nanchang University, Nanchang 330031, P. R. China
| | - Yuyang Guo
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Zhibin Liang
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Sen Li
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Zhengjiang Fu
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Hu Cai
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
3
|
Zhou H, Wang G, Wang C, Yang J. Visible-Light-Promoted Aerobic Oxyphosphorylation of α-Diazoesters with H-Phosphine Oxides. Org Lett 2022; 24:1530-1535. [DOI: 10.1021/acs.orglett.2c00198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hongyan Zhou
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ganggang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Cunhui Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
4
|
Yang F, Zhou Q, Wang H, Tang L. Copper‐Catalyzed Cross‐Dehydrogenative Phosphorylation of 2‐Amino‐1,4‐naphthoquinones with
H
‐Phosphonates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fang Yang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
| | - Heyan Wang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
| | - Lin Tang
- College of Chemistry and Chemical Engineering Xinyang Normal University Xinyang 464000 P. R. China
- Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan Xinyang 464000 P. R. China
| |
Collapse
|
5
|
Arar W, Khatyr A, Knorr M, Brieger L, Krupp A, Strohmann C, Efrit ML, Ben Akacha A. Synthesis, crystal structures and Hirshfeld analyses of phosphonothioamidates (EtO) 2P(=O)C(=S)N(H)R (R = Cy, Bz) and their coordination on CuI and HgX 2 (X = Br, I). PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1927032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wafa Arar
- Selective Organic and Heterocyclic Synthesis Biological Activity Evaluation Laboratory, Department of Chemistry, Faculty of Sciences, University El Manar, Tunis, Tunisia
| | - Abderrahim Khatyr
- Institut UTINAM-UMR CNRS 6213, Université Bourgogne Franche-Comté, Besançon, France
| | - Michael Knorr
- Institut UTINAM-UMR CNRS 6213, Université Bourgogne Franche-Comté, Besançon, France
| | - Lukas Brieger
- Anorganische Chemie, Technische Universität Dortmund, Dortmund, Germany
| | - Anna Krupp
- Anorganische Chemie, Technische Universität Dortmund, Dortmund, Germany
| | - Carsten Strohmann
- Anorganische Chemie, Technische Universität Dortmund, Dortmund, Germany
| | - Mohamed Lotfi Efrit
- Selective Organic and Heterocyclic Synthesis Biological Activity Evaluation Laboratory, Department of Chemistry, Faculty of Sciences, University El Manar, Tunis, Tunisia
| | - Azaiez Ben Akacha
- Selective Organic and Heterocyclic Synthesis Biological Activity Evaluation Laboratory, Department of Chemistry, Faculty of Sciences, University El Manar, Tunis, Tunisia
| |
Collapse
|
6
|
Nishihara Y, You J, Chen Q. Nickel-Catalyzed Decarbonylative Thioetherification of Acyl Fluorides via C–F Bond Activation. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1484-6216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractNickel-catalyzed decarbonylative thioetherification of acyl fluorides has been developed. This transformation allows an array of acyl fluorides to react with thiophenols. A wide range of functional groups are well tolerated and the corresponding sulfides can be obtained in good to excellent yields. This protocol provides the formation of diverse carbon–sulfur bonds via a highly efficient decarbonylative process.
Collapse
Affiliation(s)
- Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University
| | - Jingwen You
- Graduate School of Natural Science and Technology, Okayama University
| | - Qiang Chen
- Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
7
|
Yang F, Zhou X, Wei Y, Wang L, Jiang J. Hydroquinine-catalyzed asymmetric 1,4-hydrophosphination of in situ generated aza- o-quinone methides with H-phosphine oxides. Org Chem Front 2021. [DOI: 10.1039/d1qo00823d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An organocatalytic enantioselective 1,4-addition of H-phosphine oxides to in situ generated aza-o-quinone methides has been successfully established using hydroquinine.
Collapse
Affiliation(s)
- Fuxing Yang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Xingcui Zhou
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Yongquan Wei
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Lisheng Wang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
- Medical College, Guangxi University, Nanning, 530004, P. R. China
| | - Jun Jiang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|