1
|
Siejka A, Lawnicka H, Fakir S, Barabutis N. Growth hormone - releasing hormone in the immune system. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09913-w. [PMID: 39370499 DOI: 10.1007/s11154-024-09913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
GHRH is a neuropeptide associated with a diverse variety of activities in human physiology and immune responses. The present study reviews the latest information on the involvement of GHRH in the immune system and inflammation, suggesting that GHRH antagonists may deliver a new therapeutic possibility in disorders related to immune system dysfunction and inflammation.
Collapse
Affiliation(s)
- Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland.
| | - Hanna Lawnicka
- Department of Immunoendocrinology, Medical University of Lodz, Lodz, Poland
| | - Saikat Fakir
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| |
Collapse
|
2
|
Siejka A, Barabutis N. Growth hormone - releasing hormone in the context of inflammation and redox biology. Front Immunol 2024; 15:1403124. [PMID: 38957466 PMCID: PMC11217323 DOI: 10.3389/fimmu.2024.1403124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Affiliation(s)
- Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| |
Collapse
|
3
|
Barabutis N, Kubra KT, Akhter MS. Growth hormone-releasing hormone antagonists protect against hydrochloric acid-induced endothelial injury in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104113. [PMID: 36940786 PMCID: PMC10111240 DOI: 10.1016/j.etap.2023.104113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Growth hormone-releasing hormone (GHRH) regulates the synthesis of growth hormone from the anterior pituitary gland, and it is involved in inflammatory responses. On the other hand, GHRH antagonists (GHRHAnt) exhibit the opposite effects, resulting in endothelial barrier enhancement. Exposure to hydrochloric acid (HCL) is associated with acute and chronic lung injury. In this study, we investigate the effects of GHRHAnt in HCL-induced endothelial barrier dysfunction, utilizing commercially available bovine pulmonary artery endothelial cells (BPAEC). Cell viability was measured by utilizing 3-(4,5-dimethylthiazol2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay. Moreover, fluorescein isothiocyanate (FITC)-dextran was used to assess barrier function. Our observations suggest that GHRHAnt exert protective effects against HCL-induced endothelial breakdown, since those peptides counteract HCL-triggered paracellular hyperpermeability. Based on those findings, we propose that GHRHAnt represent a new therapeutic approach towards HCL-induced endothelial injury.
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
4
|
Kubra KT, Akhter MS, Saini Y, Kousoulas KG, Barabutis N. Activating transcription factor 6 protects against endothelial barrier dysfunction. Cell Signal 2022; 99:110432. [PMID: 35933031 PMCID: PMC10413362 DOI: 10.1016/j.cellsig.2022.110432] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Endothelial hyperpermeability is associated with sepsis and acute respiratory distress syndrome (ARDS). The identification of molecular pathways involved in barrier dysfunction; may reveal promising therapeutic targets to combat ARDS. Unfolded protein response (UPR) is a highly conserved molecular pathway, which ameliorates endoplasmic reticulum stress. The present work focuses on the effects of ATF6, which is a UPR sensor, in lipopolysaccharides (LPS)-induced endothelial hyperpermeability. METHODS The in vitro effects of AA147 and Ceapin-A7 in LPS-induced endothelial barrier dysfunction were investigated in bovine pulmonary artery endothelial cells (BPAEC). Small interfering (si) RNA was utilized to "silence" ATF6, and electric cell-substrate impedance sensing (ECIS) measured transendothelial resistance. Fluorescein isothiocyanate (FITC)-dextran assay was utilized to assess paracellular permeability. Protein expression levels were evaluated with Western blotting, and cell viability with MTT assay. RESULTS We demonstrated that AA147 prevents LPS-induced barrier disruption by counteracting Cofilin and myosin light chain 2 (MLC2) activation, as well as VE-Cadherin phosphorylation. Moreover, this ATF6 inducer opposed LPS-triggered decrease in transendothelial resistance (TEER), as well as LPS-induced paracellular hyperpermeability. On the other hand, ATF6 suppression due to Ceapin-A7 or small interfering RNA exerted the opposite effects, and potentiated LPS-induced endothelial barrier disruption. Moderate concentrations of both ATF6 modulators did not affect cell viability. CONCLUSIONS ATF6 activation protects against endothelial barrier function, suggesting that this UPR sensor may serve as a therapeutic target for sepsis and ARDS.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Yogesh Saini
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
5
|
Kubra KT, Uddin MA, Akhter MS, Leo AJ, Siejka A, Barabutis N. P53 mediates the protective effects of metformin in inflamed lung endothelial cells. Int Immunopharmacol 2021; 101:108367. [PMID: 34794886 DOI: 10.1016/j.intimp.2021.108367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023]
Abstract
The endothelial barrier regulates interstitial fluid homeostasis by transcellular and paracellular means. Dysregulation of this semipermeable barrier may lead to vascular leakage, edema, and accumulation of pro-inflammatory cytokines, inducing microvascular hyperpermeability. Investigating the molecular pathways involved in those events will most probably provide novel therapeutic possibilities in pathologies related to endothelial barrier dysfunction. Metformin (MET) is an anti-diabetic drug, opposes malignancies, inhibits cellular transformation, and promotes cardiovascular protection. In the current study, we assess the protective effects of MET in LPS-induced lung endothelial barrier dysfunction and evaluate the role of P53 in mediating the beneficial effects of MET in the vasculature. We revealed that this biguanide (MET) opposes the LPS-induced dysregulation of the lung microvasculature, since it suppressed the formation of filamentous actin stress fibers, and deactivated cofilin. To investigate whether P53 is involved in those phenomena, we employed the fluorescein isothiocyanate (FITC) - dextran permeability assay, to measure paracellular permeability. Our observations suggest that P53 inhibition increases paracellular permeability, and MET prevents those effects. Our results contribute towards the understanding of the lung endothelium and reveal the significant role of P53 in the MET-induced barrier enhancement.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Antoinette J Leo
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
6
|
Kubra KT, Barabutis N. Brefeldin A and kifunensine modulate LPS-induced lung endothelial hyperpermeability in human and bovine cells. Am J Physiol Cell Physiol 2021; 321:C214-C220. [PMID: 34161151 DOI: 10.1152/ajpcell.00142.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Endothelial hyperpermeability is the hallmark of acute respiratory distress syndrome (ARDS). Laborious efforts in the investigation of the molecular pathways involved in the regulation of the vascular barrier shall reveal novel therapeutic targets toward that respiratory disorder. Herein, we investigate in vitro the effects of the α-1,2-mannosidase 1 inhibitor kifunensine (KIF) and brefeldin A (BFA) in the lipopolysaccharides (LPS)-induced endothelial breakdown. Our results suggest that BFA opposes the deteriorating effects of KIF [unfolded protein response (UPR) suppressor] toward the lung microvasculature. Since KIF is a UPR suppressor, and brefeldin A is a UPR inducer, we suggest that a carefully devised UPR manipulation may deliver novel therapeutic avenues in diseases related to endothelial barrier dysfunction (e.g., ARDS and sepsis).
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| |
Collapse
|
7
|
Akhter MS, Uddin MA, Kubra KT, Barabutis N. Elucidation of the Molecular Pathways Involved in the Protective Effects of AUY-922 in LPS-Induced Inflammation in Mouse Lungs. Pharmaceuticals (Basel) 2021; 14:ph14060522. [PMID: 34072430 PMCID: PMC8226636 DOI: 10.3390/ph14060522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) cause thousands of deaths every year and are associated with high mortality rates (~40%) due to the lack of efficient therapies. Understanding the molecular mechanisms associated with those diseases will most probably lead to novel therapeutics. In the present study, we investigated the effects of the Hsp90 inhibitor AUY-922 in the major inflammatory pathways of mouse lungs. Mice were treated with LPS (1.6 mg/kg) via intratracheal instillation for 24 h and were then post-treated intraperitoneally with AUY-922 (10 mg/kg). The animals were examined 48 h after AUY-922 injection. LPS activated the TLR4-mediated signaling pathways, which in turn induced the release of different inflammatory cytokines and chemokines. AUY-922 suppressed the LPS-induced inflammation by inhibiting major pro-inflammatory pathways (e.g., JAK2/STAT3, MAPKs), and downregulated the IL-1β, IL-6, MCP-1 and TNFα. The expression levels of the redox regulator APE1/Ref1, as well as the DNA-damage inducible kinases ATM and ATR, were also increased after LPS treatment. Those effects were counteracted by AUY-922. Interestingly, this Hsp90 inhibitor abolished the LPS-induced pIRE1α suppression, a major component of the unfolded protein response. Our study elucidates the molecular pathways involved in the progression of murine inflammation and supports our efforts on the development of new therapeutics against lung inflammatory diseases and sepsis.
Collapse
|
8
|
Abstract
Recent evidence suggest that the endothelial barrier function is enhanced by the mild activation of the unfolded protein response (UPR), which aims to suppress abnormal increases of endoplasmic reticulum stress. Heat shock protein 90 inhibitors and growth hormone releasing hormone antagonists exert the capacity to activate this multifaceted cellular mechanism (UPR). Thus, investigations on the signalling network involved in those events, may deliver exciting opportunities in diseases related to endothelial barrier dysfunction. The diverse spectrum of those pathologies include sepsis and Acute Respiratory Distress Syndrome (ARDS).
Collapse
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| |
Collapse
|
9
|
Uddin MA, Akhter MS, Kubra KT, Siejka A, Barabutis N. Metformin in acute respiratory distress syndrome: An opinion. Exp Gerontol 2020; 145:111197. [PMID: 33310152 PMCID: PMC7834182 DOI: 10.1016/j.exger.2020.111197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022]
Abstract
Senior individuals are more susceptible to the irreversible outcomes of endothelial barrier dysfunction, the hallmark of Acute Respiratory Distress Syndrome (ARDS). The Severe Acute Respiratory Syndrome Coronovirus 2 (SARS-CoV-2) - inflicted ARDS delivers the devastating outcomes of the COVID-19 worldwide. Endothelial hyperpermeability has been associated with both the progression and establishment of the COVID-19 - related respiratory failure. In the present study we investigated the in vitro effects of Metformin in the permeability of bovine pulmonary artery endothelial cells. Our preliminary results suggest that moderate doses (0.1, 0.5, 1.0 mM) of this anti-diabetic agent enhance the vascular barrier integrity, since it produces an increase in the transendothelial resistance of endothelial monolayers. Thus, we speculate that Metformin may deliver a new therapeutic possibility in ARDS, alone or in combination with other barrier enhancers.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America
| | - Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, United States of America.
| |
Collapse
|
10
|
Uddin MA, Barabutis N. P53 in the impaired lungs. DNA Repair (Amst) 2020; 95:102952. [PMID: 32846356 PMCID: PMC7437512 DOI: 10.1016/j.dnarep.2020.102952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Our laboratory is focused on investigating the supportive role of P53 towards the maintenance of lung homeostasis. Acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, pulmonary fibrosis, bronchial asthma, pulmonary arterial hypertension, pneumonia and tuberculosis are respiratory pathologies, associated with dysfunctions of this endothelium defender (P53). Herein we review the evolving role of P53 towards the aforementioned inflammatory disorders, to potentially reveal new therapeutic possibilities in pulmonary disease.
Collapse
Affiliation(s)
- Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA.
| |
Collapse
|