1
|
Adjei-Sowah E, Chandrasiri I, Xiao B, Liu Y, Ackerman JE, Soto C, Nichols AEC, Nolan K, Benoit DSW, Loiselle AE. Development of a nanoparticle-based tendon-targeting drug delivery system to pharmacologically modulate tendon healing. SCIENCE ADVANCES 2024; 10:eadn2332. [PMID: 38896625 PMCID: PMC11186494 DOI: 10.1126/sciadv.adn2332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Satisfactory healing following acute tendon injury is marred by fibrosis. Despite the high frequency of tendon injuries and poor outcomes, there are no pharmacological therapies in use to enhance the healing process. Moreover, systemic treatments demonstrate poor tendon homing, limiting the beneficial effects of potential tendon therapeutics. To address this unmet need, we leveraged our existing tendon healing spatial transcriptomics dataset and identified an area enriched for expression of Acp5 (TRAP) and subsequently demonstrated robust TRAP activity in the healing tendon. This unexpected finding allowed us to refine and apply our existing TRAP binding peptide (TBP) functionalized nanoparticle (NP) drug delivery system (DDS) to facilitate improved delivery of systemic treatments to the healing tendon. To demonstrate the translational potential of this DDS, we delivered niclosamide (NEN), an S100a4 inhibitor. While systemic delivery of free NEN did not alter healing, TBP-NPNEN enhanced both functional and mechanical recovery, demonstrating the translational potential of this approach to enhance the tendon healing process.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Indika Chandrasiri
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yuxuan Liu
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14623, USA
| | - Jessica E. Ackerman
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Celia Soto
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Anne E. C. Nichols
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Orthopaedics and Physical Performance, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katherine Nolan
- Department of Comparative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14623, USA
- Materials Science Program, University of Rochester, Rochester, NY 14623, USA
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Alayna E. Loiselle
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Orthopaedics and Physical Performance, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
2
|
Adjei-Sowah E, Chandrasiri I, Xiao B, Liu Y, Ackerman JE, Soto C, Nichols AEC, Nolan K, Benoit DSW, Loiselle AE. Development of a Nanoparticle-Based Tendon-Targeting Drug Delivery System to Pharmacologically Modulate Tendon Healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569204. [PMID: 38076889 PMCID: PMC10705411 DOI: 10.1101/2023.11.29.569204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Tendon regeneration following acute injury is marred by a fibrotic healing response that prevents complete functional recovery. Despite the high frequency of tendon injuries and the poor outcomes, including functional deficits and elevated risk of re-injury, there are currently no pharmacological therapies in clinical use to enhance the healing process. Several promising pharmacotherapies have been identified; however, systemic treatments lack tendon specificity, resulting in poor tendon biodistribution and perhaps explaining the largely limited beneficial effects of these treatments on the tendon healing process. To address this major unmet need, we leveraged our existing spatial transcriptomics dataset of the tendon healing process to identify an area of the healing tendon that is enriched for expression of Acp5. Acp5 encodes tartrate-resistant acid phosphatase (TRAP), and we demonstrate robust TRAP activity in the healing tendon. This unexpected finding allowed us to refine and apply our existing TRAP binding peptide (TBP) functionalized nanoparticle (NP) drug delivery system (DDS) to facilitate improved delivery of systemic treatments to the healing tendon. To demonstrate the translational potential of this drug delivery system, we delivered the S100a4 inhibitor, Niclosamide to the healing tendon. We have previously shown that genetic knockdown of S100a4 enhances tendon healing. While systemic delivery of Niclosamide did not affect the healing process, relative to controls, TBP-NP delivery of Niclosamide enhanced both functional and mechanical outcome measures. Collectively, these data identify a novel tendon-targeting drug delivery system and demonstrate the translational potential of this approach to enhance the tendon healing process.
Collapse
|
3
|
Kuntjoro M, Hendrijantini N, Prasetyo EP, Legowo D, Sitalaksmi RM, Agustono B, Ari MDA, Hong G. Human umbilical cord mesenchymal stem cells accelerate and increase implant osseointegration in diabetic rats. J Appl Oral Sci 2023; 31:e20220375. [PMID: 36995883 PMCID: PMC10065760 DOI: 10.1590/1678-7757-2022-0375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVE This study was conducted to assess the effect of hUCMSCs injection on the osseointegration of dental implant in diabetic rats via Runt-related Transcription Factor 2 (Runx2), Osterix (Osx), osteoblasts, and Bone Implant Contact (BIC). METHODOLOGY The research design was a true experimental design using Rattus norvegicus Wistar strain. Rattus norvegicus were injected with streptozotocin to induce experimental diabetes mellitus. The right femur was drilled and loaded with titanium implant. Approximately 1 mm from proximal and distal implant site were injected with hUCMSCs. The control group was given only gelatin solvent injection. After 2 and 4 weeks of observation, the rats were sacrificed for further examination around implant site using immunohistochemistry staining (RUNX2 and Osterix expression), hematoxylin eosin staining, and bone implant contact area. Data analysis was done using ANOVA test. RESULTS Data indicated a significant difference in Runx2 expression (p<0.001), osteoblasts (p<0.009), BIC value (p<0.000), and Osterix expression (p<0.002). In vivo injection of hUCMSCs successfully increased Runx2, osteoblasts, and BIC value significantly, while decreased Osterix expression, indicating an acceleration of the bone maturation process. CONCLUSION The results proved hUCMSCs to accelerate and enhance implant osseointegration in diabetic rat models.
Collapse
Affiliation(s)
- Mefina Kuntjoro
- Universitas Airlangga, Faculty of Dental Medicine, Department of Prosthodontic, Surabaya, Indonesia
| | - Nike Hendrijantini
- Universitas Airlangga, Faculty of Dental Medicine, Department of Prosthodontic, Surabaya, Indonesia
| | - Eric Priyo Prasetyo
- Universitas Airlangga, Faculty of Dental Medicine, Department of Conservative Dentistry, Surabaya, Indonesia
| | - Djoko Legowo
- Universitas Airlangga, Faculty of Veterinary Medicine, Surabaya, Indonesia
| | - Ratri Maya Sitalaksmi
- Universitas Airlangga, Faculty of Dental Medicine, Department of Prosthodontic, Surabaya, Indonesia
| | - Bambang Agustono
- Universitas Airlangga, Faculty of Dental Medicine, Department of Prosthodontic, Surabaya, Indonesia
| | | | - Guang Hong
- Tohoku University, Graduate Scholl of Dentistry, Liaison Center for Innovative Dentistry, Aoba-Ku, Sendai, Japan
| |
Collapse
|
4
|
Hendrijantini N, Kuntjoro M, Agustono B, Maya Sitalaksmi R, Dimas Aditya Ari M, Theodora M, Effendi R, Setiawan Djuarsa I, Widjaja J, Sosiawan A, Hong G. Human umbilical cord mesenchymal stem cells induction in peri-implantitis Rattus norvegicus accelerates and enhances osteogenesis activity and implant osseointegration. Saudi Dent J 2023; 35:147-153. [PMID: 36942204 PMCID: PMC10024080 DOI: 10.1016/j.sdentj.2023.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
Peri-implantitis additional treatment generally aims to repair damaged tissue through a regenerative approach. Human umbilical cord mesenchymal stem cells (hUCMSCs) produce a high osteogenic effect and are capable of modulating the immune system by suppressing inflammatory response, modulating bone resorption, and inducing endogenous osteogenesis. AIM This study was intended to discover the effect of hUCMSCs on an implant osseointegration process in peri-implantitis rat subjects as assessed by several markers including interleukin-10 (IL-10), transforming growth factor-β (TGF-β), receptor activator of nuclear factor kappa- β ligand (RANKL), bone morphogenic protein (BMP-2), osterix (Osx), and osteoprotegerin (OPG). MATERIAL AND METHODS The research design implemented during this study represented a true experimental design incorporating the use of Rattus norvegicus (Wistar strain) as subjects. RESULTS Data analysed by means of a Brown Forsythe test indicated differences between the increase in BMP-2 expression (p < 0.000) and Osx expression (p < 0.001) and between RANKL expression (p < 0.001, Tukey HSD) and OPG expression (p < 0.000, Games Howell). CONCLUSION According to the findings of this research, hUCMSCs induction is successful in accelerating and enhancing osteogenic activity and implant osseointegration in peri-implantitis rat subjects.
Collapse
Affiliation(s)
- Nike Hendrijantini
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Corresponding author.
| | - Mefina Kuntjoro
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Bambang Agustono
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratri Maya Sitalaksmi
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Dimas Aditya Ari
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Marcella Theodora
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rudy Effendi
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ivan Setiawan Djuarsa
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Jennifer Widjaja
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Agung Sosiawan
- Department of Dental Public Health, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Guang Hong
- Division for Globalization Initiative, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Characterization of Bone Marrow and Wharton's Jelly Mesenchymal Stromal Cells Response on Multilayer Braided Silk and Silk/PLCL Scaffolds for Ligament Tissue Engineering. Polymers (Basel) 2020; 12:polym12092163. [PMID: 32971891 PMCID: PMC7569883 DOI: 10.3390/polym12092163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/29/2022] Open
Abstract
(1) Background: A suitable scaffold with adapted mechanical and biological properties for ligament tissue engineering is still missing. (2) Methods: Different scaffold configurations were characterized in terms of morphology and a mechanical response, and their interactions with two types of stem cells (Wharton's jelly mesenchymal stromal cells (WJ-MSCs) and bone marrow mesenchymal stromal cells (BM-MSCs)) were assessed. The scaffold configurations consisted of multilayer braids with various number of silk layers (n = 1, 2, 3), and a novel composite scaffold made of a layer of copoly(lactic acid-co-(e-caprolactone)) (PLCL) embedded between two layers of silk. (3) Results: The insertion of a PLCL layer resulted in a higher porosity and better mechanical behavior compared with pure silk scaffold. The metabolic activities of both WJ-MSCs and BM-MSCs increased from day 1 to day 7 except for the three-layer silk scaffold (S3), probably due to its lower porosity. Collagen I (Col I), collagen III (Col III) and tenascin-c (TNC) were expressed by both MSCs on all scaffolds, and expression of Col I was higher than Col III and TNC. (4) Conclusions: the silk/PLCL composite scaffolds constituted the most suitable tested configuration to support MSCs migration, proliferation and tissue synthesis towards ligament tissue engineering.
Collapse
|