1
|
Pribadi N, Kunarti S, Sylvia, Maulinda WT, Putri CR, Adanir N, Surboyo MDC, Safitri M. The lipoteichoic acid of Lactobacillus plantarum effect on lymphocyte, VEGF-A and TGF-β expression in male rat dental pulp. Cytokine 2024; 183:156741. [PMID: 39182278 DOI: 10.1016/j.cyto.2024.156741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVE Lipoteichoic acid from Lactobacillus plantarum (L. plantarum) is a significant virulence factor that exacerbates pulp inflammation. Lipoteichoic acid plays a role in modulating the inflammatory to proliferative phase transition is crucial in determining the outcome of pulp healing or necrosis. This study explores the role of L. plantarum on lymphocytes and the expression of transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor A (VEGF-A) in a male rat model of acute dental pulp injury. DESIGN The acute dental pulp model was created in the upper molar of Rattus novergicus using a round bur. Then, the dental pulp was exposed to 10 µg/ml of the lipoteichoic acid of L. plantarum and filled with a temporary filling. In the next 24, 48, and 72 h, each animal was decapitated, and the expression of TGF-β1 and VEGF-A in dental pulp was analyzed using indirect immunohistochemistry, while the lymphocytes analyzed using hematoxyline-eosin staining. RESULT Lipoteichoic acid of L. plantarum induced acute dental pulp by increasing the lymphocyte number after 48 and 72 h of exposure (p < 0.05). While, inhibiting TGF-β1 expression after 48 and 72 h of exposure (p < 0.05), and VEGF-A was inhibiting after 72 h of exposure (p < 0.05). CONCLUSION Exposure to lipoteichoic acid from L. plantarum significantly accelerates the inflammatory response in the dental pulp. However, this accelerated inflammation disrupts the proliferative phase, potentially leading to more extensive damage to the dental pulp.
Collapse
Affiliation(s)
- Nirawati Pribadi
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Sri Kunarti
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Sylvia
- Residency in Conservative Detistry Specialist Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Wulan Tri Maulinda
- Residency in Conservative Detistry Specialist Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Cindy Ramadhan Putri
- Dental Medicine Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Necdet Adanir
- Department of Restorative Dentistry, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia.
| | | | - Maya Safitri
- Dental Medicine Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| |
Collapse
|
2
|
Tan YY, Abdullah D, Abu Kasim NH, Yazid F, Mahamad Apandi NI, Ramanathan A, Soo E, Radzi R, Teh LA. Histological characterization of pulp regeneration using decellularized human dental pulp and mesenchymal stem cells in a feline model. Tissue Cell 2024; 90:102484. [PMID: 39068688 DOI: 10.1016/j.tice.2024.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Regenerative endodontics aims to restore pulp tissues, thus preserving the vitality of the tooth. One promising approach involves the utilization of decellularized human dental pulp (DHDP) as a scaffold repopulated with Wharton's Jelly mesenchymal stem cells (WJMSCs). This study aimed to regenerate pulp tissues using DHDP and WJMSCs following pulpectomy in mature canine teeth of a feline animal model and to investigate the histological features of the regenerated pulp. A 12-month-old male domestic shorthaired felines were used as subjects. Teeth were categorized into untreated (Group 1), pulpectomy with mineral trioxide aggregate (MTA) (Group 2), and pulpectomy with DHDP-repopulated scaffold and MTA (Group 3). The animals were sacrificed six weeks post-intervention. H&E and immunohistochemistry using anti-collagen type 1 and laminin antibodies were used to stain the tissue sections. Histological examinations presented pulp-like tissues in Group 3, with tissue components similar to the structures found in Group 1. Immunohistochemical analysis demonstrated the presence of collagen type I and laminin within the regenerated tissues. The root canals of teeth in Group 2 were devoid of pulpal tissue. DHDP with WJMSCs can potentially be used for pulp regeneration, supporting the modality for developing new clinical protocols in stem cell therapy.
Collapse
Affiliation(s)
- Yen Yee Tan
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Dalia Abdullah
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia.
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Farinawati Yazid
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Nurul Inaas Mahamad Apandi
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Anand Ramanathan
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Eason Soo
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Rozanaliza Radzi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor Darul Ehsan 43400, Malaysia
| | - Lay Ann Teh
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
3
|
Tiyapitsanupaisan N, Kantrong N, Puasiri S, Makeudom A, Krisanaprakornkit S, Chailertvanitkul P. Effects of Thai propolis mixed in mineral trioxide aggregate on matrix metalloproteinase-2 expression and activity in inflamed human dental pulp cells. J Appl Oral Sci 2024; 32:e20240168. [PMID: 39319905 PMCID: PMC11464073 DOI: 10.1590/1678-7757-2024-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVES This study sought to determine effects of Thai propolis extract mixed in mineral trioxide aggregate (MTA) on matrix metalloproteinase-2 (MMP-2) expression and its activity in inflamed human dental pulp cells (HDPCs). MATERIALS AND METHODS Interleukin-1β-primed HDPCs were treated with either the eluate of MTA mixed with distilled water, of MTA mixed with 0.75 mg/ml of the propolis extract, or of Dycal®, 0.75 mg/ml of the propolis extract, or 0.2% (v/v) of chlorhexidine for 24 or 72 h. The viability of HDPCs was determined by the PrestoBlue® cytotoxic assay. HDPCs' lysates were analyzed for MMP-2 mRNA expression by RT-qPCR, while their supernatants were measured for MMP-2 activity by gelatin zymography. RESULTS At 24 and 72 h, a non-toxic dose of the propolis extract at 0.75 mg/ml by itself or mixed in MTA tended to reduce MMP-2 expression upregulated by MTA, while it further decreased the MMP-2 activity as compared to that of MTA mixed with distilled water. The MMP-2 activity of interleukin-1β-primed HDPCs treated with the eluate of the propolis extract mixed in MTA was significantly lower than that of interleukin-1β-primed HDPCs at 24 h (p=0.012). As a control, treatment with chlorhexidine significantly inhibited MMP-2 expression induced by MTA and MMP-2 activity enhanced by interleukin-1β (p<0.05). Treatment with Dycal® caused a significant increase in HDPC's death, resulting in a significant decrease in MMP-2 expression and activity (p<0.05). CONCLUSIONS MTA mixed with Thai propolis extract can reduce MMP-2 mRNA expression and activity when compared to MTA mixed with distilled water in inflamed HDPCs.
Collapse
Affiliation(s)
- Nutnicha Tiyapitsanupaisan
- Khon Kaen University, Faculty of Dentistry, Department of Restorative Dentistry, Khon Kaen 40002, Thailand
| | | | - Subin Puasiri
- Khon Kaen University, Faculty of Dentistry, Department of Preventive Dentistry, Khon Kaen 40002, Thailand
| | - Anupong Makeudom
- Mae Fah Luang University, School of Dentistry, Chiang Rai 57100, Thailand
| | | | - Pattama Chailertvanitkul
- Khon Kaen University, Faculty of Dentistry, Department of Restorative Dentistry, Khon Kaen 40002, Thailand
| |
Collapse
|
4
|
Kurt A, Çıkman AŞ, Balaban E, Gümrükçü Z, Mercantepe T, Tümkaya L, Karabağ M. The effects of mineral trioxide aggregate and second-generation autologous growth factor on pulpotomy via TNF-α and NF-kβ/p65 pathways. BMC Oral Health 2024; 24:890. [PMID: 39097700 PMCID: PMC11297787 DOI: 10.1186/s12903-024-04577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/04/2024] [Indexed: 08/05/2024] Open
Abstract
This study aims to investigate the effect of Mineral Trioxide Aggregate (MTA), a bioactive endodontic cement, and Concentrated Growth Factor (CGF), a second-generation autologous growth factor, on pulpotomy-induced pulp inflammation. The study utilized the maxillary anterior central teeth of thirty-six young male Sprague Dawley rats. Forty-eight teeth were randomly assigned to two groups (12 rats/group; 24 teeth/group) based on the capping material (MTA or CGF). Subsequently, two subgroups (MTAG and CGFG) were formed per group (12 teeth/group) based on the time following pulpotomy (2-weeks and 4-weeks). The central teeth of the 12 animals assigned to the control group (CG) were not manipulated in any way, both in the 2-week group and in the 4-week group. Tissue samples extracted from rats at the end of the experiment were stained with H&E for histopathological analysis. For immunohistochemical analysis, primary antibodies for TNF-α and NF-kβ/65 were incubated. Data obtained from semi-quantitative analysis were assessed for normal distribution using Skewness-Kurtosis values, Q-Q plot, Levene's test, and the Shapiro-Wilk test on statistical software. A P value < 0.05 was considered significant. When compared with the control group, both MTAG and CGFG showed increased edematous and inflammatory areas. In MTAG, edematous and inflammatory areas decreased significantly from the 2nd week (2(2-2), 2(1-2)) to the 4th week (1(1-1), 1(0-1)), while in CGFG, edematous areas decreased (2(2-3), 1.5(1-2)), and inflammatory areas increased significantly (2(2-3), 3(2-2.5)). When compared with the control group, TNF-α and NF-kβ/p65 positivity were higher in both MTAG and CGFG. In MTAG, TNF-α [2(1.5-2)] and NF-kβ/p65 [1.5(1-2)] positivity decreased significantly from the 2nd week to the 4th week [TNF-α: 1(1-1), NF-kβ/p65: 1(1-2)], while no significant change was observed in CGFG. In conclusion, this study revealed a reduction in cells showing TNF-α and NF-kβ/p65 positivity in the MTA treatment group compared to the CGF group. Although MTA demonstrated more favorable results than CGF in mitigating pulpal inflammation within the scope of this study, further experimental and clinical investigations are warranted to obtain comprehensive data regarding CGF.
Collapse
Affiliation(s)
- Ayça Kurt
- Department of Pediatric Dentistry, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey.
| | - Ahter Şanal Çıkman
- Department of Endodontics, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Emre Balaban
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Zeynep Gümrükçü
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Tolga Mercantepe
- Departments of Histology and Embryology, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Levent Tümkaya
- Departments of Histology and Embryology, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Mert Karabağ
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| |
Collapse
|
5
|
Bumalee D, Lapthanasupkul P, Songkampol K, Srimaneekarn N, Kitkumthorn N, Arayapisit T. Qualitative Histological Evaluation of Various Decalcifying Agents on Human Dental Tissue. Eur J Dent 2023; 17:818-822. [PMID: 36220113 PMCID: PMC10569839 DOI: 10.1055/s-0042-1755615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE Dental hard tissue is among the hardest tissue of humans because it contains high amounts of inorganic substances. This leads to difficulty in preparing histological sections for histopathological examination. Acid and chelating agents are generally used to decalcify teeth. We aimed to compare the histological quality of teeth decalcified with various calcifying agents including 5% nitric acid, 50% formic acid with 20% sodium citrate (Anna Morse solution), 10% formic acid, commercial solution, and 14.4% neutral EDTA. MATERIALS AND METHODS Freshly extracted premolar teeth were fixed and submitted for decalcification using different agents. Histological examination was qualitatively evaluated for tissue integrity and staining quality. RESULTS Dentin integrity of teeth decalcified with all decalcifying agents did not show any statistical differences except that with the formic acid, whereas cementum integrity decalcified with neutral EDTA showed a superior score compared with other agents. Tissue integrity and staining quality of dental pulp cells were the best decalcified with neutral EDTA or Anna Morse solution. CONCLUSION Our findings demonstrated that EDTA and Anna Morse solution gave a similar efficiency in the preservation of tissue integrity while Anna Morse solution may be recommended as a decalcification agent in routine use due to the more satisfying decalcification time than EDTA.
Collapse
Affiliation(s)
- Dusit Bumalee
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Puangwan Lapthanasupkul
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Khumpee Songkampol
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Tawepong Arayapisit
- Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Effect of Propolis on Root Dentine Microhardness When Used as an Intracanal Medicament: An In Vitro Study. J Funct Biomater 2023; 14:jfb14030144. [PMID: 36976068 PMCID: PMC10054540 DOI: 10.3390/jfb14030144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Application of intracanal medicaments may affect the physical properties of root dentine. Calcium hydroxide (CH), a gold standard intracanal medicament, has proven to decrease root dentine microhardness. A natural extract, propolis, has been shown to be superior to CH in eradicating endodontic microbes, but its effect on the microhardness of root dentine is still not known. This investigation aims to evaluate the effect of propolis on root dentine microhardness compared to calcium hydroxide. Ninety root discs were randomly divided into three groups and treated with CH, propolis, and a control. A Vickers hardness indentation machine with a load of 200 g and dwell time of 15 s at 24 h, 3, and 7 days was used for microhardness testing. ANOVA and Tukey’s post hoc test were used for statistical analysis. A progressive decrease in microhardness values was observed in CH (p < 0.01), whereas a progressive increase was observed in the propolis group (p < 0.01). At 7 days, propolis demonstrated the highest microhardness value (64.43 ± 1.69), whereas CH demonstrated the lowest value (48.46 ± 1.60). The root dentine microhardness increased over time when propolis was applied, while it decreased over time after application of CH on root dentine sections.
Collapse
|
7
|
A magnetic antibody-conjugated nano-system for selective delivery of Ca(OH) 2 and taxotere in ovarian cancer cells. Commun Biol 2022; 5:995. [PMID: 36130999 PMCID: PMC9492675 DOI: 10.1038/s42003-022-03966-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
An efficient strategy for cancer therapy is presented, in which a tumor mass is initially pretreated with calcium hydroxide, then treated with Taxotere (TXT). In this regard, an advanced delivery system based on iron oxide nanoparticles has been designed. The surface of nanoparticles was functionalized with sortilin (SORT-1, a human IgG1 monoclonal antibody) that specifically encodes caov-4 ovarian cancerous cells. Plasmonic heating of the incorporated gold nanoparticles in polyvinyl alcohol (PVA) has been exploited to control the release process of TXT. The in vitro, ex vivo and in vivo experiments have exhibited high efficacy of a seven-day pretreatment by Ca(OH)2 plus 14 days treatment program by Ca(OH)2@Fe3O4/PVA/Au-SORT nano-therapeutics, where more penetration ratio resulted in tumor growth inhibition by ca. 78.3%. As a result, due to showing high values of the anti-tumor properties and biosafety, the presented pretreatment strategy is suggested for more effective treatment on the aged tumors. A magnetic drug delivery system containing polyvinyl alcohol, gold nanoparticles, and sortilin antibody followed by the plasmonic photothermal heating strategy for the controlled drug release is proposed, with use in ovarian cancer demonstrated.
Collapse
|
8
|
Marovic D, Par M, Posavec K, Marić I, Štajdohar D, Muradbegović A, Tauböck TT, Attin T, Tarle Z. Long-Term Assessment of Contemporary Ion-Releasing Restorative Dental Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4042. [PMID: 35744101 PMCID: PMC9227571 DOI: 10.3390/ma15124042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023]
Abstract
The objective was to evaluate new commercially available ion-releasing restorative materials and compare them to established anti-cariogenic materials. Four materials were tested: alkasite Cention (Ivoclar Vivadent) in self-cure or light-cure mode, giomer Beautifil II (Shofu), conventional glass-ionomer Fuji IX (GC), and resin composite Tetric EvoCeram (Ivoclar Vivadent) as a control. Flexural strength, flexural modulus, and Weibull modulus were measured one day, three months, and after three months with accelerated aging in ethanol. Water sorption and solubility were evaluated for up to one year. Degree of conversion was measured during 120 min for self-cured and light-cured Cention. In this study, Beautifil II was the ion-releasing material with the highest flexural strength and modulus and with the best resistance to aging. Alkasite Cention showed superior mechanical properties to Fuji IX. Weibull analysis showed that the glass-ionomer had the least reliable distribution of mechanical properties with the highest water sorption. The solubility of self-cured alkasite exceeded the permissible values according to ISO 4049. Degree of conversion of light-cured Cention was higher than in self-cure mode. The use of alkasite Cention is recommended only in the light-cure mode.
Collapse
Affiliation(s)
- Danijela Marovic
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (D.M.); (D.Š.); (Z.T.)
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (D.M.); (D.Š.); (Z.T.)
| | - Karlo Posavec
- Private Dental Practice, Dr. Ivana Novaka 28, 40000 Čakovec, Croatia;
| | - Ivana Marić
- Private Dental Practice, Odranska 10, 10000 Zagreb, Croatia;
| | - Dominik Štajdohar
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (D.M.); (D.Š.); (Z.T.)
| | - Alen Muradbegović
- Private Dental Practice, Malkočeva 3, 75000 Tuzla, Bosnia and Herzegovina;
| | - Tobias T. Tauböck
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (T.T.T.); (T.A.)
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (T.T.T.); (T.A.)
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (D.M.); (D.Š.); (Z.T.)
| |
Collapse
|
9
|
The Role of microRNAs in Pulp Inflammation. Cells 2021; 10:cells10082142. [PMID: 34440911 PMCID: PMC8391605 DOI: 10.3390/cells10082142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
The dental pulp can be affected by thermal, physical, chemical, and bacterial phenomena that stimulate the inflammatory response. The pulp tissue produces an immunological, cellular, and vascular reaction in an attempt to defend itself and resolve the affected tissue. The expression of different microRNAs during pulp inflammation has been previously documented. MicroRNAs (miRNAs) are endogenous small molecules involved in the transcription of genes that regulate the immune system and the inflammatory response. They are present in cellular and physiological functions, as well as in the pathogenesis of human diseases, becoming potential biomarkers for diagnosis, prognosis, monitoring, and safety. Previous studies have evidenced the different roles played by miRNAs in proinflammatory, anti-inflammatory, and immunological phenomena in the dental pulp, highlighting specific key functions of pulp pathology. This systematized review aims to provide an understanding of the role of the different microRNAs detected in the pulp and their effects on the expression of the different target genes that are involved during pulp inflammation.
Collapse
|
10
|
Pribadi N, Rahayu RP, Ismiyatin K, Putri CR, Surboyo MDC. The Effect of Lipoteichoic Acid from Lactobacillus plantarum on Dental Pulp Inflammation. Eur J Dent 2021; 15:682-686. [PMID: 34416767 PMCID: PMC8630942 DOI: 10.1055/s-0041-1728238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ObjectiveLactobacillus plantarum,
a bacterium located in deep caries, has a virulence factor in the form of lipoteichoic acid (LTA), which is found in the bacterial cell wall. LTA is able to trigger a neutrophils response in the dental pulp inflammation process within the first 6 to 24 hours. The quantity of bacteria is one factor influencing the increase in number of neutrophils in addition to the quality of the bacteria. This study seeks to analyze the effect of lipoteichoic acid of
Lactobacillus plantarum
(LTA-Lp) in the dental pulp inflammation by observing the number of neutrophil cells in a histopathological view.
Materials and Methods
The LTA was isolated from
L. plantarum.
The left upper molar of
Rattus novergicus
was mechanically perforated under anesthesia to induce dental pulp inflammation. The perforated tooth was then induced by 10 and 15 µg/mL of LTA-Lp and then restored by a temporary filling. The perforated tooth in the control group was only restored by a temporary filling. After 24, 48, and 72 hours, the tooth was extracted and then stained with hematoxylins and eosin to observe the neutrophils in the dental pulp via a light microscope.
Result
The number of neutrophils in the dental pulp after induction by 15 µg/mL of LTA-Lp is higher than 10 µg/mL of LTA-Lp and both controls. There were significant differences in the number of neutrophils in the dental pulp, in each group on 24, 48, and 72 hours after LTA-Lp inducing (
p
< 0.05).
Conclusion
The LTA-Lp dose of of 10 and 15 µg/mL affected the dental pulp inflammation by affecting the number of neutrophils.
Collapse
Affiliation(s)
- Nirawati Pribadi
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Airlangga, Surabaya, Indonesia
| | - Retno Pudji Rahayu
- Department of Oral Pathology and Maxillofacial, Faculty of Dental Medicine, Universitas Airlangga, Airlangga, Surabaya, Indonesia
| | - Kun Ismiyatin
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Airlangga, Surabaya, Indonesia
| | - Cindy Ramadhan Putri
- Bachelor of Dental Science, Faculty of Dental Medicine, Universitas Airlangga, Airlangga, Surabaya, Indonesia
| | | |
Collapse
|