1
|
Di Buduo CA, Lunghi M, Kuzmenko V, Laurent P, Della Rosa G, Del Fante C, Dalle Nogare DE, Jug F, Perotti C, Eto K, Pecci A, Redwan IN, Balduini A. Bioprinting Soft 3D Models of Hematopoiesis using Natural Silk Fibroin-Based Bioink Efficiently Supports Platelet Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308276. [PMID: 38514919 PMCID: PMC11095152 DOI: 10.1002/advs.202308276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/09/2024] [Indexed: 03/23/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) continuously generate platelets throughout one's life. Inherited Platelet Disorders affect ≈ 3 million individuals worldwide and are characterized by defects in platelet formation or function. A critical challenge in the identification of these diseases lies in the absence of models that facilitate the study of hematopoiesis ex vivo. Here, a silk fibroin-based bioink is developed and designed for 3D bioprinting. This bioink replicates a soft and biomimetic environment, enabling the controlled differentiation of HSPCs into platelets. The formulation consisting of silk fibroin, gelatin, and alginate is fine-tuned to obtain a viscoelastic, shear-thinning, thixotropic bioink with the remarkable ability to rapidly recover after bioprinting and provide structural integrity and mechanical stability over long-term culture. Optical transparency allowed for high-resolution imaging of platelet generation, while the incorporation of enzymatic sensors allowed quantitative analysis of glycolytic metabolism during differentiation that is represented through measurable color changes. Bioprinting patient samples revealed a decrease in metabolic activity and platelet production in Inherited Platelet Disorders. These discoveries are instrumental in establishing reference ranges for classification and automating the assessment of treatment responses. This model has far-reaching implications for application in the research of blood-related diseases, prioritizing drug development strategies, and tailoring personalized therapies.
Collapse
Affiliation(s)
| | - Marco Lunghi
- Department of Molecular MedicineUniversity of PaviaPavia27100Italy
| | | | | | | | - Claudia Del Fante
- Immunohaematology and Transfusion ServiceI.R.C.C.S. Policlinico S. Matteo FoundationPavia27100Italy
| | | | | | - Cesare Perotti
- Immunohaematology and Transfusion ServiceI.R.C.C.S. Policlinico S. Matteo FoundationPavia27100Italy
| | - Koji Eto
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto UniversityKyoto606‐8507Japan
- Department of Regenerative MedicineGraduate School of MedicineChiba UniversityChiba260‐8670Japan
| | - Alessandro Pecci
- Department of Internal MedicineI.R.C.C.S. Policlinico S. Matteo Foundation and University of PaviaPavia27100Italy
| | | | - Alessandra Balduini
- Department of Molecular MedicineUniversity of PaviaPavia27100Italy
- Department of Biomedical EngineeringTufts UniversityMedfordMA02155USA
| |
Collapse
|
2
|
Astigiano C, Piacente F, Laugieri ME, Benzi A, Di Buduo CA, Miguel CP, Soncini D, Cea M, Antonelli A, Magnani M, Balduini A, De Flora A, Bruzzone S. Sirtuin 6 Regulates the Activation of the ATP/Purinergic Axis in Endothelial Cells. Int J Mol Sci 2023; 24:ijms24076759. [PMID: 37047732 PMCID: PMC10095398 DOI: 10.3390/ijms24076759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Sirtuin 6 (SIRT6) is a member of the mammalian NAD+-dependent deac(et)ylase sirtuin family. SIRT6’s anti-inflammatory roles are emerging increasingly often in different diseases and cell types, including endothelial cells. In this study, the role of SIRT6 in pro-inflammatory conditions was investigated by engineering human umbilical vein endothelial cells to overexpress SIRT6 (SIRT6+ HUVECs). Our results showed that SIRT6 overexpression affected the levels of adhesion molecules and sustained megakaryocyte proliferation and proplatelet formation. Interestingly, the pro-inflammatory activation of the ATP/purinergic axis was reduced in SIRT6+ HUVECs. Specifically, the TNFα-induced release of ATP in the extracellular space and the increase in pannexin-1 hemichannel expression, which mediates ATP efflux, were hampered in SIRT6+ cells. Instead, NAD+ release and Connexin43 expression were not modified by SIRT6 levels. Moreover, the Ca2+ influx in response to ATP and the expression of the purinergic receptor P2X7 were decreased in SIRT6+ HUVECs. Contrary to extracellular ATP, extracellular NAD+ did not evoke pro-inflammatory responses in HUVECs. Instead, NAD+ administration reduced endothelial cell proliferation and motility and counteracted the TNFα-induced angiogenesis. Altogether, our data reinforce the view of SIRT6 activation as an anti-inflammatory approach in vascular endothelium.
Collapse
Affiliation(s)
- Cecilia Astigiano
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy
| | - Maria Elena Laugieri
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy
| | - Andrea Benzi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy
| | - Christian A. Di Buduo
- Department of Molecular Medicine, University of Pavia, Via C. Forlanini 6, 27100 Pavia, Italy
| | - Carolina P. Miguel
- Department of Molecular Medicine, University of Pavia, Via C. Forlanini 6, 27100 Pavia, Italy
| | - Debora Soncini
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Michele Cea
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo R. Benzi, 16132 Genova, Italy
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Via C. Forlanini 6, 27100 Pavia, Italy
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Antonio De Flora
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo R. Benzi, 16132 Genova, Italy
| |
Collapse
|
3
|
Marín-Quílez A, Di Buduo CA, Díaz-Ajenjo L, Abbonante V, Vuelta E, Soprano PM, Miguel-García C, Santos-Mínguez S, Serramito-Gómez I, Ruiz-Sala P, Peñarrubia MJ, Pardal E, Hernández-Rivas JM, González-Porras JR, García-Tuñón I, Benito R, Rivera J, Balduini A, Bastida JM. Novel variants in GALE cause syndromic macrothrombocytopenia by disrupting glycosylation and thrombopoiesis. Blood 2023; 141:406-421. [PMID: 36395340 PMCID: PMC10644051 DOI: 10.1182/blood.2022016995] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Glycosylation is recognized as a key process for proper megakaryopoiesis and platelet formation. The enzyme uridine diphosphate (UDP)-galactose-4-epimerase, encoded by GALE, is involved in galactose metabolism and protein glycosylation. Here, we studied 3 patients from 2 unrelated families who showed lifelong severe thrombocytopenia, bleeding diathesis, mental retardation, mitral valve prolapse, and jaundice. Whole-exome sequencing revealed 4 variants that affect GALE, 3 of those previously unreported (Pedigree A, p.Lys78ValfsX32 and p.Thr150Met; Pedigree B, p.Val128Met; and p.Leu223Pro). Platelet phenotype analysis showed giant and/or grey platelets, impaired platelet aggregation, and severely reduced alpha and dense granule secretion. Enzymatic activity of the UDP-galactose-4-epimerase enzyme was severely decreased in all patients. Immunoblotting of platelet lysates revealed reduced GALE protein levels, a significant decrease in N-acetyl-lactosamine (LacNAc), showing a hypoglycosylation pattern, reduced surface expression of gylcoprotein Ibα-IX-V (GPIbα-IX-V) complex and mature β1 integrin, and increased apoptosis. In vitro studies performed with patients-derived megakaryocytes showed normal ploidy and maturation but decreased proplatelet formation because of the impaired glycosylation of the GPIbα and β1 integrin, and reduced externalization to megakaryocyte and platelet membranes. Altered distribution of filamin A and actin and delocalization of the von Willebrand factor were also shown. Overall, this study expands our knowledge of GALE-related thrombocytopenia and emphasizes the critical role of GALE in the physiological glycosylation of key proteins involved in platelet production and function.
Collapse
Affiliation(s)
- Ana Marín-Quílez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | | | - Lorena Díaz-Ajenjo
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Elena Vuelta
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | | | - Cristina Miguel-García
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Sandra Santos-Mínguez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Inmaculada Serramito-Gómez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, CIBERER, IdIPAZ, Madrid, Spain
| | - María Jesús Peñarrubia
- Servicio de Hematología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Emilia Pardal
- Servicio de Hematología, Hospital Virgen del Puerto, Plasencia, Spain
| | - Jesús María Hernández-Rivas
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), Salamanca, Spain
| | - José Ramón González-Porras
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), Salamanca, Spain
| | - Ignacio García-Tuñón
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Rocío Benito
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Murcia, Spain
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - José María Bastida
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), Salamanca, Spain
| |
Collapse
|
4
|
Abbonante V, Di Buduo CA, Balduini A. iPSC diversity: A key for better use and improved targeting. J Thromb Haemost 2021; 19:1641-1643. [PMID: 34176219 PMCID: PMC8362123 DOI: 10.1111/jth.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Alessandra Balduini
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Department of Biomedical EngineeringTufts UniversityMedfordMassachusettsUSA
| |
Collapse
|
5
|
Balduini A, Fava C, Di Buduo CA, Abbonante V, Meneguzzi A, Soprano PM, Taus F, Castelli M, Giontella A, Dovizio M, Tacconelli S, Patrignani P, Minuz P. Expression and functional characterization of the large-conductance calcium and voltage-activated potassium channel K ca 1.1 in megakaryocytes and platelets. J Thromb Haemost 2021; 19:1558-1571. [PMID: 33590615 DOI: 10.1111/jth.15269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Ion channels are transmembrane proteins that play important roles in cell function regulation modulating ionic cell permeability. In megakaryocytes and platelets, regulated ion flows have been demonstrated to modulate platelet production and function. However, a relatively limited characterization of ion channel expression and function is available in the human megakaryocyte-platelet lineage. OBJECTIVE We analyzed the expression and function of the large-conductance calcium and voltage-activated potassium channel Kca 1.1 (also known as Maxi-K, BK, slo1) in human megakaryocytes and platelets. METHODS To investigate the functionality of Kca 1.1, we exploited different agonists (BMS-191011, NS1619, NS11021, epoxyeicosatrienoic acid isoforms) and inhibitors (iberiotoxin, penitrem A) of the channel. RESULTS In megakaryocytes, Kca 1.1 agonists determined a decreased proplatelet formation and altered interaction with the extracellular matrix. Analysis of the actin cytoskeleton demonstrated a significant decrease in megakaryocyte spreading and adhesion to collagen. In platelets, the opening of the channel Kca 1.1 led to a reduced sensitivity to agonists with blunted aggregation in response to ADP, with an inhibitory capacity additive to that of aspirin. The Kca 1.1 agonists, but not the inhibitors, determined a reduction of platelet adhesion and aggregation onto immobilized collagen underflow to an extent similar to that of aspirin and ticagrelor. The opening of the Kca 1.1 resulted in cell hyperpolarization impairing free intracellular calcium in ADP-stimulated platelets and megakaryocytes. CONCLUSIONS The present study reveals new mechanisms in platelet formation and activation, suggesting that targeting Kca 1.1 channels might be of potential pharmacological interest in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Cristiano Fava
- Section of Internal Medicine C, Department of Medicine, University of Verona, Verona, Italy
| | - Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Alessandra Meneguzzi
- Section of Internal Medicine C, Department of Medicine, University of Verona, Verona, Italy
| | - Paolo M Soprano
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Francesco Taus
- Section of Internal Medicine C, Department of Medicine, University of Verona, Verona, Italy
| | - Marco Castelli
- Section of Internal Medicine C, Department of Medicine, University of Verona, Verona, Italy
| | - Alice Giontella
- Section of Internal Medicine C, Department of Medicine, University of Verona, Verona, Italy
| | - Melania Dovizio
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST, School of Medicine, "G. d'Annunzio" University, Chieti, Italy
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST, School of Medicine, "G. d'Annunzio" University, Chieti, Italy
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology (CAST, School of Medicine, "G. d'Annunzio" University, Chieti, Italy
| | - Pietro Minuz
- Section of Internal Medicine C, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|