1
|
Chowdhury SR, Whitney R, RamachandranNair R, Bijarnia Mahay S, Sharma S. Genetic Testing in Pediatric Epilepsy: Tools, Tips, and Navigating the Traps. Pediatr Neurol 2024; 157:42-49. [PMID: 38865949 DOI: 10.1016/j.pediatrneurol.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024]
Abstract
With the advent of high-throughput sequencing and computational methods, genetic testing has become an integral part of contemporary clinical practice, particularly in epilepsy. The toolbox for genetic testing has evolved from conventional chromosomal microarray and epilepsy gene panels to state-of-the-art sequencing techniques in the modern genomic era. Beyond its potential for therapeutic benefits through precision medicine, optimizing the choice of antiseizure medications, or exploring nonpharmacological therapeutic modalities, genetic testing carries substantial diagnostic, prognostic, and personal implications. Developmental and epileptic encephalopathies, the coexistence of neurodevelopmental comorbidities, early age of epilepsy onset, unexplained drug-refractory epilepsy, and positive family history have demonstrated the highest likelihood of yielding positive genetic test results. Given the diagnostic efficacy across different testing modalities, reducing costs of next-generation sequencing tests, and genetic diversity of epilepsies, exome sequencing or genome sequencing, where feasible and available, have been recommended as the first-tier test. Comprehensive clinical phenotyping at the outset, corroborative evidence from radiology and electrophysiology-based investigations, reverse phenotyping, and periodic reanalysis are some of the valuable strategies when faced with inconclusive test results. In this narrative review, the authors aim to simplify the approach to genetic testing in epilepsy by guiding on the selection of appropriate testing tools in the indicated clinical scenarios, addressing crucial aspects during pre- and post-test counseling sessions, adeptly navigating the traps posed by uncertain or negative genetic variants, and paving the way forward to the emerging testing modalities beyond DNA sequencing.
Collapse
Affiliation(s)
- Sayoni Roy Chowdhury
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | - Robyn Whitney
- Comprehensive Paediatric Epilepsy Program, Division of Neurology, Department of Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Rajesh RamachandranNair
- Comprehensive Paediatric Epilepsy Program, Division of Neurology, Department of Pediatrics, McMaster Children's Hospital, Hamilton, Ontario, Canada
| | - Sunita Bijarnia Mahay
- Sr. Consultant, Clinical & Metabolic Geneticist, Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Suvasini Sharma
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India.
| |
Collapse
|
2
|
Grew E, Reddy M, Reichner H, Kim J, Salam M, Hashim A. Yield and Utility of Routine Epilepsy Panel Genetic Testing Among Young Patients With Seizures. J Child Neurol 2024; 39:138-146. [PMID: 38528770 DOI: 10.1177/08830738241240516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Objective: We examined the yield of routine epilepsy panel genetic testing in pediatric patients. Methods: We retrospectively reviewed epilepsy genetic panel results routinely performed in the hospital or clinic on patients <8 years old from July 2021 to July 2023. We evaluated demographics, family history, seizure type, severity, and frequency, development, tone and movement abnormalities, dysmorphism, and electroencephalography (EEG) or magnetic resonance imaging (MRI) results as predictors of results. Results: 65 patients were included with mean age 4.5 years. Sixty percent of patients were male; 11 patients had pathogenic variants (16.9%), 7 were carriers for autosomal recessive conditions (10.8%), 36 had variants of uncertain significance (55.4%), and 11 tested negative (16.9%). Pathogenic variants and variants of uncertain significance were unassociated with demographics, clinical features, imaging, or family history. Conclusion: Variants identified have potential implications for treatment (SCN1), comorbidity screening (TSC1), reproduction (ATAD1, PSAT1, and CLN8), and prognostication (FOXG1). Patients not routinely screened for a genetic cause of epilepsy by our standard practices had clinically relevant results.
Collapse
Affiliation(s)
- Emily Grew
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Mayuri Reddy
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Jinsoo Kim
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Misbah Salam
- Department of Pediatric Neurology, Children's Hospital of New Jersey at Newark Beth Israel Medical Center, Newark, NJ, USA
| | - Anjum Hashim
- Department of Pediatric Neurology, Children's Hospital of New Jersey at Newark Beth Israel Medical Center, Newark, NJ, USA
| |
Collapse
|
3
|
Clark DJ, Murray T, Drees M, Kulkarni N. A Case of ALG6-CDG with Explosive Onset of Intractable Epilepsy During Infancy. Child Neurol Open 2023; 10:2329048X231153781. [PMID: 36756224 PMCID: PMC9900650 DOI: 10.1177/2329048x231153781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
ALG6-CDG is a rare, but second most common, type 1 congenital disorder of glycosylation (CDG) caused by a defect in the α-1-3-glucosyltransferase (ALG6) enzyme in the N-glycan assembly pathway. Many mutations have been identified and inherited in an autosomal recessive pattern. There are less than 100 ALG6-CDG cases reported, all sharing the phenotype of hypotonia and developmental delay. The majority (perhaps >70%) have seizures, but a minority have intractable epilepsy or epileptic encephalopathy. We report the clinical course, EEG findings, and neuroimaging of a child found to have compound heterozygous alleles c.257 + 5G > A and c.680G > A (p.G227E) who developed explosive onset of intractable epilepsy and epileptic encephalopathy. Initially, CDG was not suspected due to its rarity and lack of multi-organ system involvement, but rapid whole exam sequence (8-day turnaround) revealed the specific diagnosis quickly.
Collapse
Affiliation(s)
- Daniel James Clark
- Division of Neurology, Nationwide Children's
Hospital, Columbus, OH, USA,Daniel James Clark, Division of Neurology,
Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA.
| | - Thomas Murray
- Division of Neurology, Nationwide Children's
Hospital, Columbus, OH, USA
| | | | - Neil Kulkarni
- Division of Neurology, Nationwide Children's
Hospital, Columbus, OH, USA
| |
Collapse
|
4
|
Phenotypic and Genotypic Spectrum of Early-Onset Developmental and Epileptic Encephalopathies-Data from a Romanian Cohort. Genes (Basel) 2022; 13:genes13071253. [PMID: 35886038 PMCID: PMC9322987 DOI: 10.3390/genes13071253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Early-onset developmental epileptic encephalopathy (DEE) refers to an age-specific, diverse group of epilepsy syndromes with electroclinical anomalies that are associated with severe cognitive, behavioral, and developmental impairments. Genetic DEEs have heterogeneous etiologies. This study includes 36 Romanian patients referred to the Regional Centre for Medical Genetics Dolj for genetic testing between 2017 and 2020. The patients had been admitted to and clinically evaluated at Doctor Victor Gomoiu Children’s Hospital and Prof. Dr. Alexandru Obregia Psychiatry Hospital in Bucharest. Panel testing was performed using the Illumina® TruSight™ One “clinical exome” (4811 genes), and the analysis focused on the known genes reported in DEEs and clinical concordance. The overall diagnostic rate was 25% (9/36 cases). Seven cases were diagnosed with Dravet syndrome (likely pathogenic/pathogenic variants in SCN1A) and two with Genetic Epilepsy with Febrile Seizures Plus (SCN1B). For the diagnosed patients, seizure onset was <1 year, and the seizure type was generalized tonic-clonic. Four additional plausible variants of unknown significance in SCN2A, SCN9A, and SLC2A1 correlated with the reported phenotype. Overall, we are reporting seven novel variants. Comprehensive clinical phenotyping is crucial for variant interpretation. Genetic assessment of patients with severe early-onset DEE can be a powerful diagnostic tool for clinicians, with implications for the management and counseling of the patients and their families.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW This article focuses on the evaluation of children and adults who present with new-onset seizures, with an emphasis on differential diagnosis, classification, evaluation, and management. RECENT FINDINGS New-onset seizures are a common presentation in neurologic practice, affecting approximately 8% to 10% of the population. Accurate diagnosis relies on a careful history to exclude nonepileptic paroxysmal events. A new classification system was accepted in 2017 by the International League Against Epilepsy, which evaluates seizure type(s), epilepsy type, epilepsy syndrome, etiology, and comorbidities. Accurate classification informs the choice of investigations, treatment, and prognosis. Guidelines for neuroimaging and laboratory and genetic testing are summarized. SUMMARY Accurate diagnosis and classification of first seizures and new-onset epilepsy are key to choosing optimal therapy to maximize seizure control and minimize comorbidities.
Collapse
|
6
|
Beltrán-Corbellini Á, Aledo-Serrano Á, Møller RS, Pérez-Palma E, García-Morales I, Toledano R, Gil-Nagel A. Epilepsy Genetics and Precision Medicine in Adults: A New Landscape for Developmental and Epileptic Encephalopathies. Front Neurol 2022; 13:777115. [PMID: 35250806 PMCID: PMC8891166 DOI: 10.3389/fneur.2022.777115] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
This review aims to provide an updated perspective of epilepsy genetics and precision medicine in adult patients, with special focus on developmental and epileptic encephalopathies (DEEs), covering relevant and controversial issues, such as defining candidates for genetic testing, which genetic tests to request and how to interpret them. A literature review was conducted, including findings in the discussion and recommendations. DEEs are wide and phenotypically heterogeneous electroclinical syndromes. They generally have a pediatric presentation, but patients frequently reach adulthood still undiagnosed. Identifying the etiology is essential, because there lies the key for precision medicine. Phenotypes modify according to age, and although deep phenotyping has allowed to outline certain entities, genotype-phenotype correlations are still poor, commonly leading to long-lasting diagnostic odysseys and ineffective therapies. Recent adult series show that the target patients to be identified for genetic testing are those with epilepsy and different risk factors. The clinician should take active part in the assessment of the pathogenicity of the variants detected, especially concerning variants of uncertain significance. An accurate diagnosis implies precision medicine, meaning genetic counseling, prognosis, possible future therapies, and a reduction of iatrogeny. Up to date, there are a few tens of gene mutations with additional concrete treatments, including those with restrictive/substitutive therapies, those with therapies modifying signaling pathways, and channelopathies, that are worth to be assessed in adults. Further research is needed regarding phenotyping of adult syndromes, early diagnosis, and the development of targeted therapies.
Collapse
Affiliation(s)
| | - Ángel Aledo-Serrano
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
- *Correspondence: Ángel Aledo-Serrano
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Centre, Dianalund, Denmark
| | - Eduardo Pérez-Palma
- Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Santiago, Chile
| | - Irene García-Morales
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
- Epilepsy Unit, Neurology Department, Clínico San Carlos University Hospital, Madrid, Spain
| | - Rafael Toledano
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
- Epilepsy Unit, Neurology Department, Ramón y Cajal University Hospital, Madrid, Spain
| | - Antonio Gil-Nagel
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| |
Collapse
|
7
|
Pejčić A, Janković SM, Đešević M, Gojak R, Lukić S, Marković N, Milosavljević M. Novel and emerging therapeutics for genetic epilepsies. Expert Rev Neurother 2021; 21:1283-1301. [PMID: 34633254 DOI: 10.1080/14737175.2021.1992275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Disease-specific treatments are available only for a minority of patients with genetic epilepsies, while the rest are treated with anticonvulsants, which are ineffective in almost one-third of patients. AREAS COVERED Recently approved and the most effective emerging therapeutics under development for the treatment of genetic epilepsies are overviewed after systematic search and analysis of relevant literature. EXPERT OPINION New and emerging drugs for genetic epilepsies exploit one of the two approaches: inhibiting hyperactive brain foci through blocking excitatory or augmenting inhibitory neurotransmission, or correcting the underlying genetic defect. The first is limited by insufficient selectivity of available compounds, and the second by imperfection of currently used vectors of genetic material, unselective and transient transgene expression. Besides, the treatment may come too late, after structural abnormalities and epilepsy deterioration takes place. However, with recent improvements, we can expect to see soon gradual decline in the number of patients with therapy-resistant genetic epilepsies.
Collapse
Affiliation(s)
- Ana Pejčić
- University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | | | - Miralem Đešević
- Private Policlinic Center Eurofar Sarajevo, Cardiology Department, Sarajevo, Bosnia and Herzegovina
| | - Refet Gojak
- Infectious diseases Clinic, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Snežana Lukić
- University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | - Nenad Marković
- University of Kragujevac, Faculty of Medical Sciences, Kragujevac, Serbia
| | | |
Collapse
|