1
|
Gao H, Jiang H. Current status and controversies in the treatment of neonatal hypoxic-ischemic encephalopathy: A review. Medicine (Baltimore) 2024; 103:e38993. [PMID: 39093737 PMCID: PMC11296446 DOI: 10.1097/md.0000000000038993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/28/2024] [Indexed: 08/04/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is a type of traumatic brain injury caused by insufficient cerebral perfusion and oxygen supply in the perinatal neonate, which can be accompanied by different types of long-term neurodevelopmental sequelae, such as cerebral palsy, learning disabilities, mental retardation and epilepsy It is one of the main causes of neonatal death and disability, and it has caused a great burden on families and society. Therefore, this article mainly reviews the latest developments in mild hypothermia therapy and related drugs for neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
| | - Hong Jiang
- Department of Neonatology, Yanan University Affiliated Hospital, Shaanxi, Yan’an, China
| |
Collapse
|
2
|
Sánchez-Borja C, Cristóbal-Cañadas D, Rodríguez-Lucenilla MI, Muñoz-Hoyos A, Agil A, Vázquez-López MÁ, Parrón-Carreño T, Nievas-Soriano BJ, Bonillo-Perales A, Bonillo-Perales JC. Lower plasma melatonin levels in non-hypoxic premature newborns associated with neonatal pain. Eur J Pediatr 2024; 183:3607-3615. [PMID: 38842550 PMCID: PMC11263426 DOI: 10.1007/s00431-024-05632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/27/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
We analyzed plasma melatonin levels in different groups of preterm newborns without hypoxia and their relationship with several perinatal variables like gestational age or neonatal pain. Prospective cohort study of preterm newborns (PTNB) without perinatal hypoxia, Apgar > 6 at 5 min, and oxygen needs on the third day of life. We compared melatonin levels at day 3 of life in different groups of non-hypoxic preterm infants (Student's t-tests, Mann-Whitney U, and chi2) and analyzed the relationship of melatonin with GA, birth weight, neonatal pain (Premature Infant Pain Profile (PIPP) scale), caffeine treatment, parenteral nutrition, or the development of free radical diseases (correlation study, linear regression) and factors associated with moderate/intense pain and free radical diseases (logistic regression analysis). Sixty-one preterm infants with gestational age (GA) of 30.7 ± 2.0 weeks with no oxygen requirements at day 3 of life were studied with plasma melatonin levels of 33.8 ± 12.01 pg/ml. Preterm infants weighing < 1250 g at birth had lower plasma melatonin levels (p = 0.05). Preterm infants with moderate or severe pain (PPIPP > 5) have lower melatonin levels (p = 0.01), and being preterm with PIPP > 5 is associated with lower plasma melatonin levels (p = 0.03). Being very preterm (GA < 32 GS), having low weight for gestational age (LWGA), receiving caffeine treatment, or requiring parenteral nutrition did not modify melatonin levels in non-hypoxic preterm infants (p = NS). Melatonin on day 3 of life in non-hypoxic preterm infants is not associated with later development of free radical diseases (BPD, sepsis, ROP, HIV, NEC). CONCLUSION We observed that preterm infants with moderate to severe pain have lower melatonin levels. These findings are relevant because they reinforce the findings of other authors that melatonin supplementation decreases pain and oxidative stress in painful procedures in premature infants. Further studies are needed to evaluate whether melatonin could be used as an analgesic in painful procedures in preterm infants. TRIAL REGISTRATION Trial registration was not required since this was an observational study. WHAT IS KNOWN • Melatonin is a potent antioxidant and free radical scavenger in newborns under stress conditions: hypoxia, acidosis, hypotension, painful procedures, or parenteral nutrition. • Pain stimulates the production of melatonin. • Various studies conclude that melatonin administration decreases pain during the neonatal period. WHAT IS NEW • Non-hypoxic preterm infants with moderate to severe pain (PIPP>5) have lower levels of melatonin. • Administration of caffeine and treatment with parenteral nutrition do not modify melatonin levels in non-hypoxic preterm infants.
Collapse
Affiliation(s)
| | | | | | | | - Ahmad Agil
- Department of Pharmacology, Institute Biohelath & Institute of Neuroscience, University of Granada, Granada, Spain
| | | | - Tesifón Parrón-Carreño
- Nursing, Physiotherapy, and Medicine Department, University of Almería, Ctra. de Sacramento, s/n, La Cañada, Almería, 01410, Spain
| | - Bruno José Nievas-Soriano
- Nursing, Physiotherapy, and Medicine Department, University of Almería, Ctra. de Sacramento, s/n, La Cañada, Almería, 01410, Spain.
| | | | | |
Collapse
|
3
|
Pavlyshyn H, Sarapuk I, Kozak K. Peculiarities of melatonin levels in preterm infants. Wien Klin Wochenschr 2024; 136:146-153. [PMID: 36434409 DOI: 10.1007/s00508-022-02109-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Melatonin plays an important role in organism functioning, child growth, and development. Of particular importance is melatonin for preterm infants. The aim of our research was to study the peculiarities of melatonin levels depending on various factors in preterm infants with gestational age (GA) of less than 34 weeks. METHODS The study involved 104 preterm infants with GA less than 34 weeks who were treated in the neonatal intensive care unit (NICU). The level of melatonin in urine samples was determined by an enzyme-linked immunosorbent assay. RESULTS Melatonin concentration was significantly lower in extremely and very preterm infants compared to moderate preterm (3.57 [2.10; 5.06] ng/ml vs. 4.96 [3.20; 8.42] ng/ml, p = 0.007) and was positively correlated with GA (Spearman r = 0.32; p < 0.001). Positive correlations were revealed between melatonin levels and Apgar scores at the 1st (Spearman r = 0.31; p = 0.001) and 5th minutes after birth (Spearman r = 0.35; p < 0.001). Melatonin levels were lower in newborns with respiratory distress syndrome (p = 0.011). No significant correlations were found between melatonin concentration and birth weight (Spearman r = 0.15; p = 0.130). There were no associations of melatonin concentrations and mode of delivery (p = 0.914), the incidence of early-onset sepsis (p = 0.370) and intraventricular hemorrhages (p = 0.501), and mechanical ventilation (p = 0.090). The results of multiple regression showed that gestational age at birth was the most significant predictor of melatonin level in preterm infants (B = 0.507; p = 0.001). CONCLUSION Gestational age and the Apgar score were associated with decreased melatonin levels in preterm infants. The level of melatonin in extremely and very preterm infants was lower compared to moderate preterm infants.
Collapse
Affiliation(s)
- Halyna Pavlyshyn
- I. Horbachevsky Ternopil National Medical University, 1 Maydan Voli, 46001, Ternopil, Ukraine
| | - Iryna Sarapuk
- I. Horbachevsky Ternopil National Medical University, 1 Maydan Voli, 46001, Ternopil, Ukraine.
| | - Kateryna Kozak
- I. Horbachevsky Ternopil National Medical University, 1 Maydan Voli, 46001, Ternopil, Ukraine
| |
Collapse
|
4
|
Garofoli F, Franco V, Accorsi P, Albertini R, Angelini M, Asteggiano C, Aversa S, Ballante E, Borgatti R, Cabini RF, Caporali C, Chiapparini L, Cociglio S, Fazzi E, Longo S, Malerba L, Materia V, Mazzocchi L, Naboni C, Palmisani M, Pichiecchio A, Pinelli L, Pisoni C, Preda L, Riboli A, Risso FM, Rizzo V, Rognone E, Simoncelli AM, Villani P, Tzialla C, Ghirardello S, Orcesi S. Fate of melatonin orally administered in preterm newborns: Antioxidant performance and basis for neuroprotection. J Pineal Res 2024; 76:e12932. [PMID: 38111174 DOI: 10.1111/jpi.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Preterm infants cannot counteract excessive reactive oxygen species (ROS) production due to preterm birth, leading to an excess of lipid peroxidation with malondialdehyde (MDA) production, capable of contributing to brain damage. Melatonin (ME), an endogenous brain hormone, and its metabolites, act as a free radical scavenger against ROS. Unfortunately, preterms have an impaired antioxidant system, resulting in the inability to produce and release ME. This prospective, multicenter, parallel groups, randomized, double-blind, placebo-controlled trial aimed to assess: (i) the endogenous production of ME in very preterm infants (gestational age ≤ 29 + 6 WE, 28 infants in the ME and 26 in the placebo group); (ii) the exogenous hormone availability and its metabolization to the main metabolite, 6-OH-ME after 15 days of ME oral treatment; (iii) difference of MDA plasma concentration, as peroxidation marker, after treatment. Blood was collected before the first administration (T1) and after 15 days of administration (T2). ME and 6-OH-ME were detected by liquid chromatography tandem mass spectrometry, MDA was measured by liquid chromatograph with fluorescence detection. ME and 6-OH-ME were not detectable in the placebo group at any study time-point. ME was absent in the active group at T1. In contrast, after oral administration, ME and 6-OH-ME resulted highly detectable and the difference between concentrations T2 versus T1 was statistically significant, as well as the difference between treated and placebo groups at T2. MDA levels seemed stable during the 15 days of treatment in both groups. Nevertheless, a trend in the percentage of neonates with reduced MDA concentration at T2/T1 was 48.1% in the ME group versus 38.5% in the placebo group. We demonstrated that very preterm infants are not able to produce endogenous detectable plasma levels of ME during their first days of life. Still, following ME oral administration, appreciable amounts of ME and 6-OH-ME were available. The trend of MDA reduction in the active group requires further clinical trials to fix the dosage, the length of ME therapy and to identify more appropriate indexes to demonstrate, at biological and clinical levels, the antioxidant activity and consequent neuroprotectant potential of ME in very preterm newborns.
Collapse
Affiliation(s)
- Francesca Garofoli
- 1Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Valentina Franco
- Department of Internal Medicine and Therapeutics, Clinical and Experimental Pharmacology Unit, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Patrizia Accorsi
- Unit of Child Neurology and Psychiatry, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Riccardo Albertini
- Laboratory of Clinical Chemistry, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Micol Angelini
- 1Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlo Asteggiano
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Salvatore Aversa
- Neonatal Intensive Care Unit, Children's Hospital, University Hospital "Spedali Civili" of Brescia, Brescia, Italy
| | - Elena Ballante
- Political and Social Sciences, University of Pavia, Pavia, Italy
- BioData Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit IRCCS Mondino Foundation, Pavia, Italy
| | | | - Camilla Caporali
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Luisa Chiapparini
- Radiodiagnostic Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Sara Cociglio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Elisa Fazzi
- Unit of Child Neurology and Psychiatry, ASST-Spedali Civili of Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefania Longo
- 1Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Malerba
- Unit of Child Neurology and Psychiatry, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Valeria Materia
- Neonatal Intensive Care Unit, Children's Hospital, University Hospital "Spedali Civili" of Brescia, Brescia, Italy
| | - Laura Mazzocchi
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Cecilia Naboni
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit IRCCS Mondino Foundation, Pavia, Italy
| | - Michela Palmisani
- Department of Internal Medicine and Therapeutics, Clinical and Experimental Pharmacology Unit, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Lorenzo Pinelli
- Neuroradiology Department, Pediatric Neuroradiology Section, Spedali Civili, Brescia, Italy
| | - Camilla Pisoni
- 1Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Preda
- Radiodiagnostic Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostics and Pediatric sciences, University of Pavia, Italy
| | - Alice Riboli
- Hospital Pediatric Psychology, Unit of Psychology, Children's Hospital "Spedali Civili" of Brescia, Brescia, Italy
| | - Francesco M Risso
- Neonatal Intensive Care Unit, Children's Hospital, University Hospital "Spedali Civili" of Brescia, Brescia, Italy
| | - Vittoria Rizzo
- Laboratory of Clinical Chemistry, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Rognone
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna M Simoncelli
- Radiodiagnostic Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Paola Villani
- Laboratory of Clinical Chemistry, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chryssoula Tzialla
- Neonatal and Pediatric Unit, Polo Ospedaliero Oltrepò, ASST Pavia, Pavia, Italy
| | - Stefano Ghirardello
- 1Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
5
|
Zhang Y, Chen D, Wang Y, Wang X, Zhang Z, Xin Y. Neuroprotective effects of melatonin-mediated mitophagy through nucleotide-binding oligomerization domain and leucine-rich repeat-containing protein X1 in neonatal hypoxic-ischemic brain damage. FASEB J 2023; 37:e22784. [PMID: 36692416 DOI: 10.1096/fj.202201523r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
Hypoxia-ischemia (HI) is a major cause of brain damage in neonates. Mitochondrial dysfunction acts as a hub for a broad spectrum of signaling events, culminating in cell death triggered by HI. A neuroprotective role of melatonin (MT) has been proposed, and mitophagy regulation seems to be important for cell survival. However, the molecular mechanisms underlying MT-mediated mitophagy during HI treatment are poorly defined. Nucleotide-binding oligomerization domain and leucine-rich repeat-containing protein X1 (NLRX1) has emerged as a critical regulator of mitochondrial dynamics and neuronal death that participates in the pathology of diverse diseases. This study aimed to clarify whether NLRX1 participates in the regulation of mitophagy during MT treatment for hypoxic-ischemic brain damage (HIBD). We demonstrated that MT protected neonates from HIBD through NLRX1-mediated mitophagy in vitro and in vivo. Meanwhile, MT upregulated the expression of NLRX1, Beclin-1, and autophagy-related 7 (ATG7) but decreased the expression of the mammalian target of rapamycin (mTOR) and translocase of the inner membrane of mitochondrion 23 (TIM23). Moreover, the neuroprotective effects of MT were abolished by silencing NLRX1 after oxygen-glucose deprivation (OGD). In addition, the downregulation of mTOR and upregulation of Beclin-1 and ATG7 by MT were inhibited after silencing NLRX1 under OGD. In summary, MT modulates mitophagy induction through NLRX1 and plays a protective role in HIBD, providing insight into potential therapeutic targets for MT to exert neuroprotection.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, P.R. China
| | - Dan Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, P.R. China
| | - Yiwei Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, P.R. China.,Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, P.R. China
| | - Xingzao Wang
- Department of Clinical Medicine, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, P.R. China
| | - Zhong Zhang
- Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, P.R. China
| | - Ying Xin
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, P.R. China
| |
Collapse
|
6
|
Tarocco A, Morciano G, Perrone M, Cafolla C, Ferrè C, Vacca T, Pistocchi G, Meneghin F, Cocchi I, Lista G, Cetin I, Greco P, Garani G, Stella M, Natile M, Ancora G, Savarese I, Campi F, Bersani I, Dotta A, Tiberi E, Vento G, Chiodin E, Staffler A, Maranella E, Di Fabio S, Wieckowski MR, Giorgi C, Pinton P. Increase of Parkin and ATG5 plasmatic levels following perinatal hypoxic-ischemic encephalopathy. Sci Rep 2022; 12:7795. [PMID: 35551488 PMCID: PMC9098891 DOI: 10.1038/s41598-022-11870-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/18/2022] [Indexed: 11/27/2022] Open
Abstract
Brain injury at birth is an important cause of neurological and behavioral disorders. Hypoxic-ischemic encephalopathy (HIE) is a critical cerebral event occurring acutely or chronically at birth with high mortality and morbidity in newborns. Therapeutic strategies for the prevention of brain damage are still unknown, and the only medical intervention for newborns with moderate-to-severe HIE is therapeutic hypothermia (TH). Although the neurological outcome depends on the severity of the initial insult, emerging evidence suggests that infants with mild HIE who are not treated with TH have an increased risk for neurodevelopmental impairment; in the current clinical setting, there are no specific or validated biomarkers that can be used to both correlate the severity of the hypoxic insult at birth and monitor the trend in the insult over time. The aim of this work was to examine the presence of autophagic and mitophagic proteins in bodily fluids, to increase knowledge of what, early at birth, can inform therapeutic strategies in the first hours of life. This is a prospective multicentric study carried out from April 2019 to April 2020 in eight third-level neonatal intensive care units. All participants have been subjected to the plasma levels quantification of both Parkin (a protein involved in mitophagy) and ATG5 (involved in autophagy). These findings show that Parkin and ATG5 levels are related to hypoxic-ischemic insult and are reliable also at birth. These observations suggest a great potential diagnostic value for Parkin evaluation in the first 6 h of life.
Collapse
Affiliation(s)
- Anna Tarocco
- Neonatal Intensive Care Unit and Neonatology, University Hospital S. Anna, 44121, Ferrara, Italy.,Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Giampaolo Morciano
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, 44121, Ferrara, Italy.
| | - Mariasole Perrone
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Claudia Cafolla
- Department of Medical Sciences, Pediatric Unit, University of Ferrara, 44121, Ferrara, Italy
| | - Cristina Ferrè
- Department of Medical Sciences, Pediatric Unit, University of Ferrara, 44121, Ferrara, Italy
| | - Tiziana Vacca
- Neonatal Intensive Care Unit and Neonatology, University Hospital S. Anna, 44121, Ferrara, Italy
| | - Ginevra Pistocchi
- BSC Medical Biosciences Faculty of Medicine, Imperial College, London, SW7 2AZ, UK
| | - Fabio Meneghin
- Neonatal Pathology and Neonatal Intensive Care Unit, Vittore-Buzzi Children Hospital, Milan, Italy
| | - Ilaria Cocchi
- Neonatal Pathology and Neonatal Intensive Care Unit, Vittore-Buzzi Children Hospital, Milan, Italy
| | - Gianluca Lista
- Neonatal Pathology and Neonatal Intensive Care Unit, Vittore-Buzzi Children Hospital, Milan, Italy
| | - Irene Cetin
- Obstetrics and Gynecology Unit, Vittore Buzzi Children Hospital" and University of Milan, 20154, Milan, Italy
| | - Pantaleo Greco
- Department of Medical Sciences, Section of Obstetrics and Gynecology, University Hospital S.Anna, 44121, Ferrara, Italy
| | - Giampaolo Garani
- Neonatal Intensive Care Unit and Neonatology, University Hospital S. Anna, 44121, Ferrara, Italy
| | - Marcello Stella
- Pediatrics Department and Neonatal and Pediatric Intensive Care Unit, Bufalini Hospital, 47521, Cesena, Italy
| | - Miria Natile
- Neonatal Intensive Care Unit, Infermi Hospital Rimini, 47921, Rimini, Italy
| | - Gina Ancora
- Neonatal Intensive Care Unit, Infermi Hospital Rimini, 47921, Rimini, Italy
| | - Immacolata Savarese
- Department of Neonatology, Bambino Gesù Children's Hospital - IRCCS, 00165, Rome, Italy
| | - Francesca Campi
- Department of Neonatology, Bambino Gesù Children's Hospital - IRCCS, 00165, Rome, Italy
| | - Iliana Bersani
- Department of Neonatology, Bambino Gesù Children's Hospital - IRCCS, 00165, Rome, Italy
| | - Andrea Dotta
- Department of Neonatology, Bambino Gesù Children's Hospital - IRCCS, 00165, Rome, Italy
| | - Eloisa Tiberi
- Department of Woman and Child Health, Obstetric and Neonatology Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Giovanni Vento
- Department of Woman and Child Health, Obstetric and Neonatology Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Elisabetta Chiodin
- Division of Neonatology, Central Teaching Hospital of Bolzano, 39100, Bolzano, Italy
| | - Alex Staffler
- Division of Neonatology, Central Teaching Hospital of Bolzano, 39100, Bolzano, Italy
| | - Eugenia Maranella
- Neonatology and Neonatal Intensive Care Unit, San Salvatore Hospital, 67100, L'Aquila, Italy
| | - Sandra Di Fabio
- Neonatology and Neonatal Intensive Care Unit, San Salvatore Hospital, 67100, L'Aquila, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, NenckiInstituteofExperimental Biology, Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, 44121, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, 44121, Ferrara, Italy.
| |
Collapse
|
7
|
Cannavò L, Perrone S, Viola V, Marseglia L, Di Rosa G, Gitto E. Oxidative Stress and Respiratory Diseases in Preterm Newborns. Int J Mol Sci 2021; 22:ijms222212504. [PMID: 34830385 PMCID: PMC8625766 DOI: 10.3390/ijms222212504] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
Premature infants are exposed to increased generation of reactive oxygen species, and on the other hand, they have a deficient antioxidant defense system. Oxidative insult is a salient part of lung injury that begins as acute inflammatory injury in respiratory distress disease and then evolves into chronic and structural scarring leading to bronchopulmonary dysplasia. Oxidative stress is also involved in the pathogenesis of pulmonary hypertension in newborns through the modulation of the vascular tone and the response to pulmonary vasodilators, with consequent decrease in the density of the pulmonary vessels and thickening of the pulmonary arteriolar walls. Oxidative stress has been recognized as both a trigger and an endpoint for several events, including inflammation, hypoxia, hyperoxia, drugs, transfusions, and mechanical ventilation, with impairment of pulmonary function and prolonged lung damage. Redoxomics is the most fascinating new measure to address lung damage due to oxidative stress. The new challenge is to use omics data to discover a set of biomarkers useful in diagnosis, prognosis, and formulating optimal and individualized neonatal care. The aim of this review was to examine the most recent evidence on the relationship between oxidative stress and lung diseases in preterm newborns. What is currently known regarding oxidative stress-related lung injury pathogenesis and the available preventive and therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Laura Cannavò
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| | - Serafina Perrone
- Neonatology Unity, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-703518
| | - Valeria Viola
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| | - Lucia Marseglia
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (L.C.); (V.V.); (L.M.); (E.G.)
| |
Collapse
|
8
|
Reyes-Corral M, Sola-Idígora N, de la Puerta R, Montaner J, Ybot-González P. Nutraceuticals in the Prevention of Neonatal Hypoxia-Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions. Int J Mol Sci 2021; 22:2524. [PMID: 33802413 PMCID: PMC7959318 DOI: 10.3390/ijms22052524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Neonatal hypoxia-ischemia (HI) is a brain injury caused by oxygen deprivation to the brain due to birth asphyxia or reduced cerebral blood perfusion, and it often leads to lifelong limiting sequelae such as cerebral palsy, seizures, or mental retardation. HI remains one of the leading causes of neonatal mortality and morbidity worldwide, and current therapies are limited. Hypothermia has been successful in reducing mortality and some disabilities, but it is only applied to a subset of newborns that meet strict inclusion criteria. Given the unpredictable nature of the obstetric complications that contribute to neonatal HI, prophylactic treatments that prevent, rather than rescue, HI brain injury are emerging as a therapeutic alternative. Nutraceuticals are natural compounds present in the diet or used as dietary supplements that have antioxidant, anti-inflammatory, or antiapoptotic properties. This review summarizes the preclinical in vivo studies, mostly conducted on rodent models, that have investigated the neuroprotective properties of nutraceuticals in preventing and reducing HI-induced brain damage and cognitive impairments. The natural products reviewed include polyphenols, omega-3 fatty acids, vitamins, plant-derived compounds (tanshinones, sulforaphane, and capsaicin), and endogenous compounds (melatonin, carnitine, creatine, and lactate). These nutraceuticals were administered before the damage occurred, either to the mothers as a dietary supplement during pregnancy and/or lactation or to the pups prior to HI induction. To date, very few of these nutritional interventions have been investigated in humans, but we refer to those that have been successful in reducing ischemic stroke in adults. Overall, there is a robust body of preclinical evidence that supports the neuroprotective properties of nutraceuticals, and these may represent a safe and inexpensive nutritional strategy for the prevention of neonatal HI encephalopathy.
Collapse
Affiliation(s)
- Marta Reyes-Corral
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Noelia Sola-Idígora
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
| | - Rocío de la Puerta
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Joan Montaner
- Neurovascular Research Lab, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| | - Patricia Ybot-González
- Neurodevelopment Research Group, Institute of Biomedicine of Seville, IBIS/HUVR/CSIC/US, 41013 Seville, Spain; (M.R.-C.); (N.S.-I.); (P.Y.-G.)
- Department of Neurology and Neurophysiology, Hospital Universitario Virgen Macarena, 41009 Seville, Spain
| |
Collapse
|