1
|
Pereira H, Cengiz IF, Silva-Correia J, Oliveira JM, Vasconcelos JC, Gomes S, Ripoll PL, Karlsson J, Reis RL, Espregueira-Mendes J. Integration of polyurethane meniscus scaffold during ACL revision is not reliable at 5 years despite favourable clinical outcome. Knee Surg Sports Traumatol Arthrosc 2022; 30:3422-3427. [PMID: 35338384 DOI: 10.1007/s00167-022-06946-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/10/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of this study was to evaluate the clinical outcome at 5-year follow-up of a one-step procedure combining anterior cruciate ligament (ACL) reconstruction and partial meniscus replacement using a polyurethane scaffold for the treatment of symptomatic patients with previously failed ACL reconstruction and partial medial meniscectomy. Moreover, the implanted scaffolds have been evaluated by MRI protocol in terms of morphology, volume, and signal intensity. METHODS Twenty patients with symptomatic knee laxity after failed ACL reconstruction and partial medial meniscectomy underwent ACL revision combined with polyurethane-based meniscal scaffold implant. Clinical assessment at 2- and 5-year follow-ups included VAS, Tegner Activity Score, International Knee Documentation Committee (IKDC), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the Lysholm Score. MRI evaluation of the scaffold was performed according to the Genovese scale with quantification of the scaffold's volume at 1- and 5-year follow-ups. RESULTS All scores revealed clinical improvement as compared with the preoperative values at the 2- and 5-year follow-ups. However, a slight, but significant reduction of scores was observed between 2 and 5 years. Concerning the MRI assessment, a significant reduction of the scaffold's volume was observed between 1 and 5 years. Genovese Morphology classification at 5 years included two complete resorptions (Type 3) and all the remaining patients had irregular morphology (Type 2). With regard to the Genovese Signal at the 5-year follow-up, three were classified as markedly hyperintense (Type 1), 15 as slightly hyperintense (Type 2), and two as isointense (Type 1). CONCLUSION Simultaneous ACL reconstruction and partial meniscus replacement using a polyurethane scaffold provides favourable clinical outcomes in the treatment of symptomatic patients with previously failed ACL reconstruction and partial medial meniscectomy at 5 years. However, MRI evaluation suggests that integration of the scaffold is not consistent. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- Hélder Pereira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Orthopedic Department, Centro Hospitalar Póvoa de Varzim, Vila do Conde, Portugal. .,Ripoll y de Prado Sports Clinic-FIFA Medical Centre of Excellence, Murcia-Madrid, Spain.
| | - Ibrahim Fatih Cengiz
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Sérgio Gomes
- Clínica Espregueira-FIFA Medical Centre of Excellence, Porto, Portugal
| | - Pedro L Ripoll
- Ripoll y de Prado Sports Clinic-FIFA Medical Centre of Excellence, Murcia-Madrid, Spain
| | - Jón Karlsson
- Sahlgrenska Sports Medicine Center, Gothenburg, Sweden.,Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Orthopaedics, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Espregueira-Mendes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clínica Espregueira-FIFA Medical Centre of Excellence, Porto, Portugal
| |
Collapse
|