1
|
Smith CS, Riddell M, Badalato L, Au PYB. Adults with paternal UPD14 causing Kagami-Ogata syndrome: Case report and review of the literature. Am J Med Genet A 2024; 194:e63625. [PMID: 38741340 DOI: 10.1002/ajmg.a.63625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
Kagami-Ogata syndrome (KOS) is a clinically recognizable syndrome in the neonatal period. It is characterized by specific skeletal anomalies and facial dysmorphisms. It is typically caused by paternal uniparental disomy of chromosome 14, while epimutations and microdeletions are less commonly reported causes. In the pediatric setting, KOS is a well delineated syndrome. However, there is a dearth of literature describing the natural history of the condition in adults. Herein, we describe a 35-year-old man, the first adult with KOS reported due to paternal uniparental disomy 14, and review reports of KOS in other affected adults. This highlights the variability in neurocognitive phenotypes, the presence of connective tissue abnormalities, and the uncertainties around long-term cancer risk.
Collapse
Affiliation(s)
- Christopher S Smith
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Madison Riddell
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Lauren Badalato
- Department of Pediatrics, Queen's University, Kingston, Ontario, Canada
| | - Ping Yee Billie Au
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Yang X, Li M, Qi Q, Zhou X, Hao N, Lü Y, Jiang Y. Prenatal diagnosis of recurrent Kagami-Ogata syndrome inherited from a mother affected by Temple syndrome: a case report and literature review. BMC Med Genomics 2024; 17:222. [PMID: 39210340 PMCID: PMC11360317 DOI: 10.1186/s12920-024-01987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Kagami-Ogata syndrome (KOS) and Temple syndrome (TS) are two imprinting disorders characterized by the absence or reduced expression of maternal or paternal genes in the chromosome 14q32 region, respectively. We present a rare prenatally diagnosed case of recurrent KOS inherited from a mother affected by TS. CASE PRESENTATION The woman's two affected pregnancies exhibited recurrent manifestations of prenatal overgrowth, polyhydramnios, and omphalocele, as well as a small bell-shaped thorax with coat-hanger ribs postnatally. Prenatal genetic testing using a single-nucleotide polymorphism array detected a 268.2-kb deletion in the chromosome 14q32 imprinted region inherited from the mother, leading to the diagnosis of KOS. Additionally, the woman carried a de novo deletion in the paternal chromosome 14q32 imprinted region and presented with short stature and small hands and feet, indicating a diagnosis of TS. CONCLUSIONS Given the rarity of KOS as an imprinting disorder, accurate prenatal diagnosis of this rare imprinting disorder depends on two factors: (1) increasing clinician recognition of the clinical phenotype and related genetic mechanism, and (2) emphasizing the importance of imprinted regions in the CMA workflow for laboratory analysis.
Collapse
Affiliation(s)
- Xueting Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Mengmeng Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Qingwei Qi
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiya Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Na Hao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Yan Lü
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| | - Yulin Jiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Lim CWC, Lustestica IE, Poon WB, Tan WC. Polyhydramnios associated with rare genetic syndromes: two case reports. J Med Case Rep 2024; 18:97. [PMID: 38369506 PMCID: PMC10875787 DOI: 10.1186/s13256-024-04435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/02/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND We present two genetic causes of polyhydramnios that were challenging to diagnose due to their rarity and complexity. In view of the severe implications, we wish to highlight these rare genetic conditions when obstetricians consider differential diagnoses of polyhydramnios in the third trimester. CASE PRESENTATION Patient 1 is a 34-year-old Asian woman who was diagnosed with polyhydramnios at 28 weeks' gestation. First trimester testing, fetal anomaly scan, and intrauterine infection screen were normal. Subsequent antenatal ultrasound scans revealed macroglossia, raising the suspicion for Beckwith-Wiedemann syndrome. Chromosomal microarray analysis revealed a female profile with no pathological copy number variants. The patient underwent amnioreduction twice in the pregnancy. The patient presented in preterm labor at 34 weeks' gestation but elected for an emergency caesarean section. Postnatally, the baby was noted to have a bell-shaped thorax, coat hanger ribs, hypotonia, abdominal distension, and facial dysmorphisms suggestive of Kagami-Ogata syndrome. Patient 2 is a 30-year-old Asian woman who was diagnosed with polyhydramnios at 30 weeks' gestation. She had a high-risk first trimester screen but declined invasive testing; non-invasive prenatal testing was low risk. Ultrasound examination revealed a macrosomic fetus with grade 1 echogenic bowels but no other abnormalities. Intrauterine infection screen was negative, and there was no sonographic evidence of fetal anemia. She had spontaneous rupture of membranes at 37 + 3 weeks but subsequently delivered by caesarean section in view of pathological cardiotocography. The baby was noted to have inspiratory stridor, hypotonia, low-set ears, and bilateral toe polysyndactyly. Further genetic testing revealed a female profile with a pathogenic variant of the GLI3 gene, confirming a diagnosis of Greig cephalopolysyndactyly syndrome. CONCLUSION These cases illustrate the importance of considering rare genetic causes of polyhydramnios in the differential diagnosis, particularly when fetal anomalies are not apparent at the 20-week structural scan. We would like to raise awareness for these rare conditions, as a high index of suspicion enables appropriate counseling, prenatal testing, and timely referral to pediatricians and geneticists. Early identification and diagnosis allow planning of perinatal care and birth in a tertiary center managed by a multidisciplinary team.
Collapse
Affiliation(s)
- C W C Lim
- Department of Obstetrics & Gynaecology, Singapore General Hospital, Singapore, Singapore.
| | - I E Lustestica
- Department of Neonatology & Developmental Medicine, Singapore General Hospital, Singapore, Singapore
| | - W B Poon
- Department of Neonatology & Developmental Medicine, Singapore General Hospital, Singapore, Singapore
| | - W C Tan
- Department of Obstetrics & Gynaecology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
4
|
Kilich G, Hassey K, Behrens EM, Falk M, Vanderver A, Rader DJ, Cahill PJ, Raper A, Zhang Z, Westerfer D, Jadhav T, Conlin L, Izumi K, Rajagopalan R, Sullivan KE. Kagami Ogata syndrome: a small deletion refines critical region for imprinting. NPJ Genom Med 2024; 9:5. [PMID: 38212313 PMCID: PMC10784583 DOI: 10.1038/s41525-023-00389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Kagami-Ogata syndrome is a rare imprinting disorder and its phenotypic overlap with multiple different etiologies hampers diagnosis. Genetic etiologies include paternal uniparental isodisomy (upd(14)pat), maternal allele deletions of differentially methylated regions (DMR) in 14q32.2 or pure primary epimutations. We report a patient with Kagami-Ogata syndrome and an atypical diagnostic odyssey with several negative standard-of-care genetic tests followed by epigenetic testing using methylation microarray and a targeted analysis of whole-genome sequencing to reveal a 203 bp deletion involving the MEG3 transcript and MEG3:TSS-DMR. Long-read sequencing enabled the simultaneous detection of the deletion, phasing, and biallelic hypermethylation of the MEG3:TSS-DMR region in a single assay. This case highlights the challenges in the sequential genetic testing paradigm, the utility of long-read sequencing as a single comprehensive diagnostic assay, and the smallest reported deletion causing Kagami-Ogata syndrome allowing important insights into the mechanism of imprinting effects at this locus.
Collapse
Affiliation(s)
- Gonench Kilich
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kelly Hassey
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edward M Behrens
- Division of Rheumatology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Marni Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Adeline Vanderver
- Division of Neurology, Children's Hospital of Philadelphia and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Departments of Medicine, Pediatrics and Genetics, Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick J Cahill
- Division of Orthopedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anna Raper
- Division of Translational Medicine and Human Genetics, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Zhe Zhang
- The Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dawn Westerfer
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tanaya Jadhav
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laura Conlin
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kosuke Izumi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, USA
| | - Ramakrishnan Rajagopalan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Gawade K, Raczynska KD. Imprinted small nucleolar RNAs: Missing link in development and disease? WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1818. [PMID: 37722601 DOI: 10.1002/wrna.1818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
The 14q32.2 (DLK1-DIO3) and 15q11-q13 (SNURF-SNRPN) imprinted gene loci harbor the largest known small nucleolar RNA clusters expressed from the respective maternal and paternal alleles. Recent studies have demonstrated significant roles for the 15q11-q13 located SNORD115-SNORD116 C/D box snoRNAs in Prader-Willi syndrome (PWS), a neurodevelopmental disorder. Even though the effect of SNORD116 deletion is apparent in the PWS phenotype, similar effects of a SNORD113-SNORD114 cluster deletion from the 14q32.2 locus in Kagami-Ogata syndrome (KOS14) and upregulation in Temple syndrome (TS14) remain to be explored. Moreover, apart from their probable involvement in neurodevelopmental disorders, snoRNAs from the SNORD113-SNORD114 cluster have been implicated in multiple biological processes, including pluripotency, development, cancers, and RNA modifications. Here we summarize the current understanding of the system to explore the possibility of a link between developmental disorders and C/D box snoRNA expression from the imprinted 14q32.2 locus. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development RNA Processing > Processing of Small RNAs.
Collapse
Affiliation(s)
- Kishor Gawade
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Katarzyna D Raczynska
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Poznan, Poland
| |
Collapse
|
6
|
Kuriki A, Hosoya S, Ozawa K, Wada S, Kosugi Y, Wada YS, Sekizawa A, Miyazaki O, Kagami M, Sago H. Quantitative assessment of coat-hanger ribs detected on three-dimensional ultrasound for prenatal diagnosis of Kagami-Ogata syndrome. J Obstet Gynaecol Res 2022; 48:3314-3318. [PMID: 36087043 PMCID: PMC10087373 DOI: 10.1111/jog.15425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 08/07/2022] [Accepted: 08/27/2022] [Indexed: 11/27/2022]
Abstract
Kagami-Ogata syndrome (KOS14) is a rare disease characterized by omphalocele, polyhydramnios and a bell-shaped thorax. Although the coat-hanger appearance of the ribs on postnatal X-rays is a key diagnostic finding of KOS14, its prenatal diagnosis remains challenging. We encountered a case of KOS14 diagnosed prenatally that showed omphalocele, polyhydramnios, and a bell-shaped narrow thorax. The coat-hanger angle (CHA) measured at the sixth thoracic vertebrae and the ribs using three-dimensional (3D) ultrasonography was 39°, reflecting the coat-hanger appearance of the ribs. Segmental uniparental disomy chromosome 14 (UPD(14)pat) was confirmed by a methylation analysis and microsatellite analysis after birth. The median CHA (minimum, maximum) in 25 normal fetuses was 19 (9, 26) degrees, and a sonographic CHA of 30° may be a border value for diagnosing KOS14. When the combination of omphalocele and polyhydramnios is found prenatally, 3D ultrasonography for CHA might aid in the differential diagnosis of KOS14.
Collapse
Affiliation(s)
- Akane Kuriki
- Division of Fetal Medicine, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan.,Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Satoshi Hosoya
- Division of Fetal Medicine, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Katsusuke Ozawa
- Division of Fetal Medicine, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Seiji Wada
- Division of Fetal Medicine, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Yohei Kosugi
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Yuka S Wada
- Division of Neonatology, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Osamu Miyazaki
- Department of Radiology, National Center for Child Health and Development, Tokyo, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Center for Child Health and Development, Tokyo, Japan
| | - Haruhiko Sago
- Division of Fetal Medicine, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
7
|
Hu J, Zhang Y, Yang Y, Wang L, Sun Y, Dong M. Case report: Prenatal diagnosis of Kagami–Ogata syndrome in a Chinese family. Front Genet 2022; 13:959666. [PMID: 36035167 PMCID: PMC9410364 DOI: 10.3389/fgene.2022.959666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this work was to explore the genetic cause of the proband (Ⅲ2) presenting with polyhydramnios and gastroschisis. Copy number variation sequencing (CNV-seq), methylation-specific multiplex PCR (MS-PCR), and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) were used to characterize the genetic etiology. CNV-seq revealed a deletion of 732.26 kb at 14q32.2q32.31 in the proband (Ⅲ2) and its mother (Ⅱ2). MS-PCR showed the maternal allele was missing in the proband, while paternal allele was missing in its mother. MS-MLPA showed deletion of the DLK1, MEG3, MIR380, and RTL1 genes of both the proband and its mother. MEG3 imprinting gene methylation increased in the proband, while decreased in its mother. It was indicated that a maternally transmitted deletion was responsible for Kagami–Ogata syndrome in the proband (Ⅲ2), and the de novo paternal deletion resulted in Temple syndrome in the mother (Ⅱ2). Prenatal diagnosis was provided at 17+3 weeks of pregnancy on the mother’s fourth pregnancy (Ⅲ4). Fortunately, the karyotype and single-nucleotide polymorphism array (SNP array) results were normal. The current investigation provided the detection methods for imprinted gene diseases, expanded the phenotype spectrum of the disease, and obtained the insight into the diagnosis, prenatal diagnosis, and genetic counseling of the disease.
Collapse
Affiliation(s)
- Junjie Hu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Zhang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanmei Yang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liya Wang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yixi Sun
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minyue Dong
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- *Correspondence: Minyue Dong,
| |
Collapse
|
8
|
Higashiyama H, Ohsone Y, Takatani R, Futatani T, Kosaki R, Kagami M. Two infants with mild, atypical clinical features of Kagami-Ogata syndrome caused by epimutation. Eur J Med Genet 2022; 65:104580. [PMID: 35953028 DOI: 10.1016/j.ejmg.2022.104580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/04/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022]
Abstract
Kagami-Ogata syndrome (KOS) is an imprinting disorder characterized by polyhydramnios, bell-shaped thorax with coat-hanger appearance (curved ribs), respiratory distress, abdominal wall defects, and distinct facial features, together with intellectual developmental delay with special needs. Abnormal expression of the imprinted genes on chromosome 14q32.2 causes KOS. Epimutation with aberrant hypermethylation of the MEG3/DLK1: intergenic differentially methylated region (MEG3/DLK1:IG-DMR) and the MEG3:TSS-DMR is one of the etiologies of KOS. We report two infants with KOS caused by epimutation presenting with some characteristic clinical features, mild clinical course, and almost normal motor and intellectual development. Methylation analysis for ten DMRs related to major imprinting disorders using pyrosequencing with genomic DNA (gDNA) extracted from leukocytes showed abnormally increased methylation levels of the MEG3/DLK1:IG-DMR and MEG3:TSS-DMR in both patients, but lower than those in patients with paternal uniparental disomy chromosome 14 (upd(14)pat). The methylation levels in the DMRs other than both DMRs were within normal range. We also conducted methylation analysis for the MEG3/DLK1:IG-DMR and MEG3:TSS-DMR with gDNA extracted from nails and buccal cells of both patients. Methylation levels in the MEG3:TSS-DMR, particularly in buccal cells, were closer to normal range compared to those in leukocytes. Microsatellite analysis for chromosome 14 and array comparative hybridization analysis showed no upd(14)pat or microdeletion involving the 14q32.2 imprinted region in either patient. A differential mosaic ratio of cells with aberrant methylation of DMRs at the 14q32.2 imprinted region among tissues (connective tissue, lung, and brain) might have led to their atypical clinical features. Further studies of patients with epimutation should further expand the phenotypic spectrum of KOS.
Collapse
Affiliation(s)
| | - Yoshiteru Ohsone
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Japan
| | - Rieko Takatani
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Japan
| | - Takeshi Futatani
- Department of Pediatrics, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
9
|
Suriapperuma T, Randeny S, Mettananda S. Kagami-Ogata syndrome: a case report. J Med Case Rep 2022; 16:284. [PMID: 35864517 PMCID: PMC9306061 DOI: 10.1186/s13256-022-03512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kagami-Ogata syndrome is a rare genetic imprinting disorder involving the 14q32.2 genomic location of chromosome 14. The estimated incidence is less than 1 per 1 million. Here we report a male neonate with Kagami-Ogata syndrome presenting with severe respiratory distress requiring mechanical ventilation since birth. CASE PRESENTATION A Sri Lankan male neonate born at term via caesarean section to a mother with type 1 diabetes mellitus and hypothyroidism developed respiratory distress immediately after birth. On examination, the baby had facial dysmorphism with a hirsute forehead, full cheeks, flat nasal bridge, elongated protruding philtrum, and micrognathia. His chest was small and bell shaped, and he had severe intercostal and subcostal recessions. His abdominal wall was lax and thin, with evidence of divarication of the recti. Bowel peristalsis was easily visible through the abdominal wall. The chest x-ray showed narrowing of the rib cage with crowding of the ribs in a "coat-hanger" appearance. The coat-hanger angle was 32°, and the mid-to-widest thoracic diameter was 68%. On the basis of facial dysmorphism, chest and anterior abdominal wall abnormalities, coat-hanger appearance of the rib cage, increased coat-hanger angle, and reduced mid-to-widest thoracic diameter, a clinical diagnosis of Kagami-Ogata syndrome was made. Owing to severe respiratory distress, the baby required intubation and ventilation immediately after birth. He was ventilator-dependent for 3 weeks; however, he was successfully weaned off the ventilator on day 22 after several failed extubation attempts. At 3-month follow-up, he had generalized hypotonia and mild global developmental delay. His developmental age corresponded to 2 months. CONCLUSIONS We report a patient with Kagami-Ogata syndrome presenting with respiratory distress immediately after birth. This case report highlights the importance of being aware of this rare condition, which could present as severe respiratory distress in term and preterm newborns. A positive diagnosis could avoid unnecessary treatment and aid in accurate prognostication.
Collapse
Affiliation(s)
- Tharindi Suriapperuma
- Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Colombo, Sri Lanka. .,Colombo North Teaching Hospital, Ragama, Sri Lanka.
| | - Shobhavi Randeny
- Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Colombo, Sri Lanka.,Colombo North Teaching Hospital, Ragama, Sri Lanka
| | - Sachith Mettananda
- Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Colombo, Sri Lanka. .,Colombo North Teaching Hospital, Ragama, Sri Lanka.
| |
Collapse
|
10
|
Transient Polyhydramnios during Pregnancy Complicated with Gestational Diabetes Mellitus: Case Report and Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12061340. [PMID: 35741150 PMCID: PMC9221944 DOI: 10.3390/diagnostics12061340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
Polyhydramnios is an obstetrical condition defined as a pathological increase in the amniotic fluid and is associated with a high risk of maternal-fetal complications. Common causes of polyhydramnios include fetal anatomical and genetic abnormalities, gestational diabetes mellitus, and fetal viral infections. We present the case of a 30-year-old Caucasian woman with transient polyhydramnios associated with gestational diabetes mellitus and obstetric complications. The diagnosis was based on the ultrasound assessment of amniotic fluid volume during a common examination at 26 weeks. Two weeks prior, the patient had been diagnosed with gestational diabetes mellitus. After 4 days, the patient was examined, and the amniotic fluid index returned to normal values. At 38 weeks, the patient presented to the emergency room due to lack of fetal active movement. Ultrasound revealed polyhydramnios, the patient was admitted for severe fetal bradycardia, and fetal extraction through emergency cesarian section was performed. Six weeks after birth, the patient underwent an oral glucose tolerance test with normal values, confirming gestational diabetes mellitus. We performed a systematic review of the literature on polyhydramnios, from January 2016 to April 2022, to analyze all recent published cases and identify the most common etiological causes and important aspects related to maternal-fetal outcomes.
Collapse
|
11
|
Li F, Liu S, Jia B, Wu R, Chang Q. Prenatal Diagnosis of a Mosaic Paternal Uniparental Disomy for Chromosome 14: A Case Report of Kagami-Ogata Syndrome. Front Pediatr 2021; 9:691761. [PMID: 34746047 PMCID: PMC8566877 DOI: 10.3389/fped.2021.691761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022] Open
Abstract
The Kagami-Ogata syndrome (KOS) is a rare imprinting disorder with a distinct clinical phenotype. In KOS, polyhydramnios is associated with a small bell-shaped thorax and coat-hanger ribs. The genetic etiology of KOS includes paternal uniparental disomy 14 [upd(14)pat], epimutations, and microdeletions affecting the maternally derived imprinted region of chromosome 14q32.2. More than 77 cases of KOS have been reported; however, only one mosaic upd(14)pat case has been reported. Here we report a second mosaic upd(14)pat case. The prognosis of upd(14)pat patients is poor because of severe respiratory insufficiency. We summarized prenatal ultrasound findings of KOS to raise awareness of this condition for possible diagnosis of KOS prenatally when polyhydramnios combination with a small bell-shaped thorax and other related features are first observed. Prenatal diagnosis using methylation-specific multiplex ligation-dependent probe amplification (MLPA) or a single-nucleotide polymorphism-based microarray analysis is recommended.
Collapse
Affiliation(s)
- Fenxia Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siping Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bei Jia
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruifeng Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingxian Chang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|