1
|
Wei Y, Wan Z, Jiang Y, Liu Z, Yang M, Tang J. No Causal Association between ACE Inhibitors and Skin Fibrosis Risk: Evidence from Mendelian Randomization. J Invest Dermatol 2025:S0022-202X(25)00013-2. [PMID: 39814197 DOI: 10.1016/j.jid.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/24/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Affiliation(s)
- Yangyang Wei
- Department of Plastic Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China; Eight-year Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ziqi Wan
- Eight-year Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Department of Radiation Oncology, National Cancer Center/Cancer Hospital /National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Jiang
- Eight-year Program, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengye Liu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming Yang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jieying Tang
- Department of Plastic Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Fan Y, Guo X, Tian Y, Li J, Xi H. Botulinum toxin type A inhibits the formation of hypertrophic scar through the JAK2/STAT3 pathway. BIOMOLECULES & BIOMEDICINE 2024; 25:249-258. [PMID: 39132968 PMCID: PMC11647250 DOI: 10.17305/bb.2024.10906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Hypertrophic scar (HS) is a fibrous proliferative disorder that occurs in the dermis after skin injury. Studies have confirmed that Botulinum toxin type A (BTA) is effective in scar prevention and treatment. However, the specific mechanism remains uncertain. Hypertrophic scar fibroblasts (HSFs) and normal skin fibroblasts (NSFs) from the skin tissues of HS patients were isolated and cultured. Western blot analysis was conducted to measure the expression of JAK2/STAT3 pathway-related proteins. HSFs were treated with the JAK2 inhibitor (AG490) or agonist (C-A1). The CCK-8 assay, EdU staining, scratch-wound assay and transwell assay were used to examine the biological properties of HSFs. Western blot, immunofluorescence, and Sirius red staining were used to assess the fibrosis of HSFs. Additionally, a mouse full-thickness wound model was constructed to investigate the role of BTA in wound healing. The results showed that the JAK2 and STAT3 phosphorylation levels were markedly increased in HS tissues and HSFs. AG490 treatment reduced cell viability, proliferation and migration capacity, and inhibited the fibrosis of HSFs, whereas C-A1 treatment had the opposite effect. BTA treatment inhibited the JAK2/STAT3 pathway. BTA reduced cell viability, proliferation and migration ability, and inhibited the fibrosis of HSFs, while C-A1 intervention weakened the impact of BTA. Meanwhile, BTA promoted wound healing and reduced collagen deposition in vivo. In conclusion, BTA inhibited the JAK2/STAT3 pathway, which in turn hindered the proliferation, migration and fibrosis of HSFs, and promoted wound healing in mice.
Collapse
Affiliation(s)
- Yan Fan
- Department of Paediatrics, Shanxi Medical University, Shanxi, China
- Department of Burns and Plastic Surgery, Children’s Hospital of Shanxi (Women Health Center of Shanxi), Shanxi, China
| | - Xuesong Guo
- Department of Burns and Plastic Surgery, Children’s Hospital of Shanxi (Women Health Center of Shanxi), Shanxi, China
| | - Yu Tian
- Department of Burns and Plastic Surgery, Children’s Hospital of Shanxi (Women Health Center of Shanxi), Shanxi, China
| | - Jie Li
- Department of Orthopedics, Children’s Hospital of Shanxi (Women Health Center of Shanxi), Shanxi, China
| | - Hongwei Xi
- Department of General Surgery, Children’s Hospital Affiliated to Shanxi Medical University, Shanxi, China
| |
Collapse
|
3
|
Dai Q, Cheng L, Wang C. The Effectiveness of Early Treatment With Intense Pulsed Light Combined With Fractional Erbium Laser in Preventing Post-traumatic Hypertrophic Scar Formation. J Craniofac Surg 2024:00001665-990000000-02251. [PMID: 39641906 DOI: 10.1097/scs.0000000000010972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Once scars form and begin to proliferate, treatment becomes challenging. Traditional methods of scar treatment often provide suboptimal results. Therefore, early intervention has become widely accepted, with a focus on prevention during the wound-healing phase rather than later treatment. Here, the authors evaluate the effectiveness of early treatment with intense pulsed light (IPL) combined with fractional erbium laser in preventing the formation of post-traumatic hypertrophic scars. METHODS A total of 120 patients who underwent emergency cosmetic suture surgery for facial trauma between January 2019 and December 2021 were selected for the study. The control group received conventional antiscar therapy (pressure therapy or antiscar medication), while the observation group received IPL combined with fractional erbium laser in addition to the conventional treatment. The specific treatment doses were adjusted based on the patient's age, scar color, texture, and thickness. A treatment course consisted of 3 to 5 sessions, with 4-week intervals between treatments. Follow-up was conducted within 1 year after treatment to assess the improvement in scar appearance before and after therapy. RESULTS After IPL combined with fractional erbium laser treatment, patients in the observation group showed significantly lower scores in color, thickness, vascular distribution, softness, and total scores on the Vancouver Scar Scale (VSS) compared with the control group. During the follow-up, 3 complications were observed: 2 cases of skin blisters and 1 case of pigmentation. No immediate skin lesions, depigmentation, infections, ulcers, or other adverse reactions were reported. CONCLUSIONS For patients with early-stage superficial scars following trauma surgery, early treatment with IPL combined with fractional erbium laser not only leads to significant improvements in appearance and effectively prevents hypertrophic scar formation but also promotes rapid recovery with few complications. This approach has clinical value.
Collapse
Affiliation(s)
- Qiang Dai
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
4
|
Zhong C, Shi K, Li P, Qiu X, Wu X, Chen S, Liu Y, Li F, Zhao Z, Zhou J, Liang G, Xu D. Single-cell sequencing analysis and bulk-seq identify IGFBP6 and TNFAIP6 as novel differential diagnosis markers for postburn pathological scarring. Burns 2024; 50:107255. [PMID: 39317554 DOI: 10.1016/j.burns.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND If not accurately diagnosed and treated, postburn pathological scars, such as keloids and hypertrophic scars, can lead to negative clinical outcomes. However, differential diagnosis at the molecular level for postburn pathological scars remains limited. Using single-cell sequencing analysis, we investigated the genetic nuances of pathological scars at the cellular level. This study aimed to identify molecular diagnostic biomarkers to distinguish between postburn keloids and hypertrophic scars. METHODS Single-cell sequencing, differential expression, and weighted co-expression network analyses were performed to identify potential key genes for discriminating between keloids and hypertrophic scars. Postburn clinical samples were collected from our centre to validate the expression levels of the identified key genes. RESULTS Single-cell sequencing analysis unveiled 29 and 30 cell clusters in keloids and hypertrophic scars, respectively, predominantly composed of fibroblasts. Bulk differential gene analysis showed 96 highly expressed genes and 69 lowly expressed genes in keloids compared to hypertrophic scars. By incorporating previous research, Gene Set Enrichment Analysis was conducted to select fibroblasts as the focus of research. According to the single-cell data, 301 genes were stably expressed in fibroblasts from both types of pathological scars. Consistently, Weighted Gene Co-expression Network Analysis revealed that the blue module genes were mostly hub genes associated with fibroblasts. After intersecting fibroblast-related genes in single-cell data, Weighted Gene Co-expression Network Analysis-hub module genes, and bulk differential expression genes, insulin-like growth factor binding protein 6 and tumour necrosis factor alpha-induced protein 6 were identified as key genes to distinguish keloids from hypertrophic scars, resulting in diagnostic accuracies of 1.0 and 0.75, respectively. Immunohistochemical Staining and Quantitative Reverse Transcription PCR revealed that the expression levels of tumour necrosis factor alpha induced protein 6 and insulin-like growth factor binding protein 6 were significantly lower in postburn keloids than in hypertrophic scars- CONCLUSIONS: Tumour necrosis factor alpha induced protein 6 and insulin-like growth factor binding protein 6, exhibiting high diagnostic accuracy, provide valuable guidance for the differential diagnosis and treatment of postburn pathological scars.
Collapse
Affiliation(s)
- Chi Zhong
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China.
| | - Ke Shi
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Peiting Li
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Xiaohui Qiu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Xianrui Wu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Shuyue Chen
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Yang Liu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Fuying Li
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Zitong Zhao
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Jianda Zhou
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China
| | - Geao Liang
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China.
| | - Dan Xu
- The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, YueLu District, Changsha 410013, Hunan Province, China.
| |
Collapse
|
5
|
Xu Z, Tian Y, Hao L. Exosomal miR‑194 from adipose‑derived stem cells impedes hypertrophic scar formation through targeting TGF‑β1. Mol Med Rep 2024; 30:216. [PMID: 39329201 PMCID: PMC11465438 DOI: 10.3892/mmr.2024.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Hypertrophic scars, which result from aberrant fibrosis and disorganized collagen synthesis by skin fibroblasts, emerge due to disrupted wound healing processes. These scars present significant psychosocial and functional challenges to affected individuals. The current treatment limitations largely arise from an incomplete understanding of the underlying mechanisms of hypertrophic scar development. Recent studies, however, have shed light on the potential of exosomal non‑coding RNAs interventions to mitigate hypertrophic scar proliferation. The present study assessed the impact of exosomes derived from adipose‑derived stem cells (ADSCs‑Exos) on hypertrophic scar formation using a rabbit ear model. It employed hematoxylin and eosin staining, Masson's trichrome staining and immunohistochemical staining techniques to track scar progression. The comprehensive analysis of the present study encompassed the differential expression of non‑coding RNAs, enrichment analyses of functional pathways, protein‑protein interaction studies and micro (mi)RNA‑mRNA interaction investigations. The results revealed a marked alteration in the expression levels of long non‑coding RNAs and miRNAs following ADSCs‑Exos treatment, with little changes observed in circular RNAs. Notably, miRNA (miR)‑194 emerged as a critical regulator within the signaling pathways that govern hypertrophic scar formation. Dual‑luciferase assays indicated a significant reduction in the promoter activity of TGF‑β1 following miR‑194 overexpression. Reverse transcription‑quantitative PCR and immunoblotting assays further validated the decrease in TGF‑β1 expression in the treated samples. In addition, the treatment resulted in diminished levels of inflammatory markers IL‑1β, TNF‑α and IL‑10. In vivo evidence strongly supported the role of miR‑194 in attenuating hypertrophic scar formation through the suppression of TGF‑β1. The present study endorsed the strategic use of ADSCs‑Exos, particularly through miR‑194 modulation, as an effective strategy for reducing scar formation and lowering pro‑inflammatory and fibrotic indicators such as TGF‑β1. Therefore, the present study advocated the targeted application of ADSCs‑Exos, with an emphasis on miR‑194 modulation, as a promising approach to managing proliferative scarring.
Collapse
Affiliation(s)
- Zhishan Xu
- The Plastic and Cosmetic Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Yuan Tian
- The Plastic and Cosmetic Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Lijun Hao
- The Plastic and Cosmetic Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
6
|
Wang X, Liu D. Macrophage Polarization: A Novel Target and Strategy for Pathological Scarring. Tissue Eng Regen Med 2024; 21:1109-1124. [PMID: 39352458 PMCID: PMC11589044 DOI: 10.1007/s13770-024-00669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND Abnormal scarring imposes considerable challenges and burdens on the lives of patients and healthcare system. Macrophages at the wound site are found to be of great concern to overall wound healing. There have been many studies indicating an inextricably link between dysfunctional macrophages and fibrotic scars. Macrophages are not only related to pathogen destruction and phagocytosis of apoptotic cells, but also involved in angiogenesis, keratinization and collagen deposition. These abundant cell functions are attributed to specific heterogeneity and plasticity of macrophages, which also add an extra layer of complexity to correlational researches. METHODS This article summarizes current understanding of macrophage polarization in scar formation and several prevention and treatment strategies on pathological scarring related to regulation of macrophage behaviors by utilizing databases such as PubMed, Google Scholar and so on. RESULTS There are many studies proving that macrophages participate in the course of wound healing by converting their predominant phenotype. The potential of macrophages in managing hypertrophic scars and keloid lesions have been underscored. CONCLUSION Macrophage polarization offers new prevention strategies for pathological scarring. Learning about and targeting at macrophages may be helpful in achieving optimum wound healing.
Collapse
Affiliation(s)
- Xinyi Wang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
- Queen Mary Academy, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Dewu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
7
|
Herzum A, Viglizzo G, Gariazzo L, Pastorino C, Casteni N, Occella C. Pulsed dye laser in jellyfish-induced keloids. J COSMET LASER THER 2024; 26:109-113. [PMID: 39482257 DOI: 10.1080/14764172.2024.2420990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/07/2023] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Jellyfish stings can cause acute inflammatory skin lesions that may hesitate in keloids. Pulsed dye laser (PDL) represents one of the most effective treatments for newly developed keloids. Aim of this study was to evaluate the efficacy of PDL on newly developed keloids specifically induced by jellyfish stings in pediatric patients.We conducted a retrospective observational study on pediatric patients with newly developed keloids from jellyfish stings, treated in the last two years with 595 nm wavelength PDL with a duration of 0.45-1.5 msec, spot-size 7 mm and fluence 8.5-9.5 J/cm2. PDL therapy was administered for a mean of 7.4 treatment sessions, every 1-3 months. Two expert dermatologists evaluated the vascularity, pigmentation, height, and pliability of keloids, according to the Vancouver Scar Scale (VSS), pre-and-post treatment. A total of 17 patients (7 males, 10 females) were included in the study, mean age of 11 years. Overall, mean pre-treatment global VSS was 11.0 ± 1.50. After treatment, global VSS was 3.88 ± 1.87. At paired t-test, the difference between pre-treatment and post-treatment was highly statistically significant (p < .0001). Commonly, manipulation and therapeutic intervention on jellyfish scars and keloids is feared. The present study supports the use of PDL in keloids secondary to jellyfish stings, though conducted on a limited number of patients.
Collapse
Affiliation(s)
- Astrid Herzum
- Dermatology Department, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Lodovica Gariazzo
- Dermatology Department, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Nadia Casteni
- Ospedale di Giorno, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Corrado Occella
- Dermatology Department, IRCCS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
8
|
Zhang Y, Liu E, Gao H, He Q, Chen A, Pang Y, Zhang X, Bai S, Zeng J, Guo J. Natural products for the treatment of hypertrophic scars: Preclinical and clinical studies. Heliyon 2024; 10:e37059. [PMID: 39296083 PMCID: PMC11408005 DOI: 10.1016/j.heliyon.2024.e37059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Hypertrophic scarring (HS) is a complication of wound healing that causes physiological and psychological distress in patients. However, the possible mechanism underlying HS is not fully understood, and there is no gold standard for its treatment. Natural products are more effective, economical, convenient, and safe than existing drugs, and they have a wide application prospect. However, there is a lack of literature on this topic, so we reviewed in vivo, in vitro, and clinical studies and screened natural products showing beneficial effects on HS that can become potential therapeutic agents for HS to fill in the gaps in the field. In addition, we discussed the drug delivery systems related to these natural products and their mechanisms in the treatment of HS. Generally speaking, natural products inhibit inflammation, myofibroblast activation, angiogenesis, and collagen accumulation by targeting interleukins, tumor necrosis factor-α, vascular endothelial growth factors, platelet-derived growth factors, and matrix metalloproteinases, so as to play an anti-HS effects of natural products are attributed to their anti-inflammatory, anti-proliferative, anti-angiogenesis, and pro-apoptotic (enhancing apoptosis and autophagy) roles, thus treating HS. We also screened the potential therapeutic targets of these natural compounds for HS through network pharmacology and constructed a protein-protein interaction (PPI) network, which may provide clues for the pharmacological mechanism of natural products in treating this disease and the development and application of drugs.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - E Liu
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | | | - Qingying He
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Anjing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Yaobing Pang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Xueer Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Sixian Bai
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| |
Collapse
|
9
|
Mammo DA, Wai K, Rahimy E, Pan CK, Srivastava SK, Mruthyunjaya P. Association of Cutaneous Keloids, Hypertrophic Scarring, and Fibrosis with Risk of Postoperative Proliferative Vitreoretinopathy. Ophthalmology 2024; 131:961-966. [PMID: 38296203 DOI: 10.1016/j.ophtha.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 03/21/2024] Open
Abstract
PURPOSE To assess an association between cutaneous keloids, hypertrophic scarring, and fibrosis (KHF) and risk of postoperative proliferative vitreoretinopathy (PVR) after rhegmatogenous retinal detachment (RRD) repair. DESIGN Retrospective, population-based cohort study. PARTICIPANTS Patients aged ≥ 18 years who underwent initial retinal detachment (RD) repair with pars plana vitrectomy with or without scleral buckle (SB) (Current Procedural Terminology [CPT] 67108), pneumatic retinopexy (67110), and primary SB (67107) from January 1, 2003, to March 1, 2023. METHODS A de-identified electronic health record database through TriNetX, a global health research network, was used to analyze patients. Patients were queried for International Classification of Diseases, 10th Revision (ICD-10) codes L91.0 (hypertrophic scar) and L90.5 (scar conditions and fibrosis of skin). Frequency of subsequent diagnosis of PVR (H35.2) and CPT codes for secondary surgery including complex RD repair (67113) were determined. Patients with proliferative diabetic retinopathy (PDR) (ICD-10 H10.35/H11.35) were excluded. Descriptive statistics (Z-test) and propensity score matching (PSM) were used to match for age, sex, and race. MAIN OUTCOME MEASURES Prevalence of H35.2 and CPT 67113 within 180 days after RRD repair in the KHF cohort versus the non-KHF cohort. RESULTS Among patients with CPT 67108, 1061 in each cohort (KHF and non-KHF) were analyzed after PSM. The mean (standard deviation) age was 60.7 (15.2) years. Within 180 days, 10.1% of patients in the KHF cohort and 3.4% in the non-KHF cohort had a diagnosis of PVR (H35.2) (P < 0.001, odds ratio [OR], 3.2; 95% confidence interval [CI], 2.13-4.71). A total of 8.3% of patients in the KHF cohort and 5.4% of patients in the non-KHF cohort underwent complex RD repair (CPT 67113) (P = 0.008; OR, 3.2; 95% CI, 1.13-2.25). When including all RD repair types (CPT 67108, 67110, 67107), the rate of PVR diagnosis was still significantly greater in the KHF cohort than in the non-KHF cohort (9.0% vs 4.2%, P < 0.01; OR, 2.28; 95% CI, 1.64-3.16). CONCLUSIONS A dermatologic history of KHF may be a risk factor for PVR after RD repair. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Danny A Mammo
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio.
| | - Karen Wai
- Byers Eye Institute, Stanford Health Care, Palo Alto, California
| | - Ehsan Rahimy
- Byers Eye Institute, Stanford Health Care, Palo Alto, California
| | - Carolyn K Pan
- Byers Eye Institute, Stanford Health Care, Palo Alto, California
| | | | | |
Collapse
|
10
|
Menashe S, Heller L. Keloid and Hypertrophic Scars Treatment. Aesthetic Plast Surg 2024; 48:2553-2560. [PMID: 38453710 DOI: 10.1007/s00266-024-03869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Hypertrophic scars are contained within the site of injury and may regress over time, while keloids spread beyond the borders of the initial injury and do not regress. On histologic examination, hypertrophic scars tend to have collagen in a wavy, regular pattern, whereas keloids have no distinct pattern of collagen. OBJECTIVE To retrospectively analyze improvement in keloid and hypertrophic scars characteristics following treatment with Ablative 10600 nm and a non-Ablative 1570 nm Hybrid Laser Device. METHODS Treatment parameters with the ProScan Hybrid Mode were 40 W/1.3-1.5 ms for the CO2 and 12 W/4 ms for the 1570 nm in a 1:1 ratio. Outcomes were assessed based on physician scar grading as measured by the Vancouver Scar Scale and patient-reported satisfaction. Excel was used for data analysis, and a p value < 0.05 was considered statistically significant. Adverse events and patient pain were also recorded. RESULTS A total of 31 hypertrophic scars and 30 keloid scars were treated. There was a significant reduction in Vancouver Scar Scale scores for both hypertrophic and keloid scars (62% ± 8% and 58% ± 7%; p = 2.6E-17 and p = 8.29E-26, respectively). In a scar-based comparison, a statistically significant difference was observed for all measures reflecting favorable outcomes for hypertrophic scars (VSS, p = 1.1E-05; satisfaction, p = 0.0112; pain, p = 0.00081). Only one adverse event was reported, a superficial burn treated with topical antibiotics. CONCLUSIONS The device was found to be safe and effective, with promising results for the treatment of hypertrophic and keloid scars. LEVEL OF EVIDENCE II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Shaked Menashe
- The Department of Adult and Pediatric Plastic, Aesthetic and Reconstructive Surgery, Shamir Medical Center Be'er Ya'akov, Shamir Medical Center Assaf Harofeh, Tel Aviv, Israel.
| | - Lior Heller
- The Department of Adult and Pediatric Plastic, Aesthetic and Reconstructive Surgery, Shamir Medical Center Be'er Ya'akov, Shamir Medical Center Assaf Harofeh, Tel Aviv, Israel
| |
Collapse
|
11
|
Bronte J, Zhou C, Vempati A, Tam C, Khong J, Hazany S, Hazany S. A Comprehensive Review of Non-Surgical Treatments for Hypertrophic and Keloid Scars in Skin of Color. Clin Cosmet Investig Dermatol 2024; 17:1459-1469. [PMID: 38911337 PMCID: PMC11193462 DOI: 10.2147/ccid.s470997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024]
Abstract
Hypertrophic and keloid scars are fibroproliferative growths resulting from aberrant wound healing. Individuals with Fitzpatrick skin types (FSTs) IV-VI are particularly predisposed to hypertrophic and keloid scarring, yet specific guidelines for these populations are still lacking within the literature. Therefore, this comprehensive review provides a list of various treatments and considerations for hypertrophic and keloid scarring in patients with skin of color. We constructed a comprehensive PubMed search term and performed quadruple-blinded screening on all resulting studies to achieve this objective. Our findings demonstrate 1) the lack of efficacious treatments for raised scars within this population and 2) the need to empirically investigate individualized and multimodal therapeutic options for those with skin of color.
Collapse
Affiliation(s)
- Joshua Bronte
- Department of Research, Scar Healing Institute, Los Angeles, CA, USA
| | - Crystal Zhou
- Department of Research, Scar Healing Institute, Los Angeles, CA, USA
| | - Abhinav Vempati
- Department of Research, Scar Healing Institute, Los Angeles, CA, USA
| | - Curtis Tam
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey Khong
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sanam Hazany
- Department of Research, Scar Healing Institute, Los Angeles, CA, USA
| | - Salar Hazany
- Department of Research, Scar Healing Institute, Los Angeles, CA, USA
| |
Collapse
|
12
|
Yang L, Li X, Wang Y. Ferrostatin-1 inhibits fibroblast fibrosis in keloid by inhibiting ferroptosis. PeerJ 2024; 12:e17551. [PMID: 38887622 PMCID: PMC11182022 DOI: 10.7717/peerj.17551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Background Keloid is a chronic proliferative fibrotic disease caused by abnormal fibroblasts proliferation and excessive extracellular matrix (ECM) production. Numerous fibrotic disorders are significantly influenced by ferroptosis, and targeting ferroptosis can effectively mitigate fibrosis development. This study aimed to investigate the role and mechanism of ferroptosis in keloid development. Methods Keloid tissues from keloid patients and normal skin tissues from healthy controls were collected. Iron content, lipid peroxidation (LPO) level, and the mRNA and protein expression of ferroptosis-related genes including solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), transferrin receptor (TFRC), and nuclear factor erythroid 2-related factor 2 (Nrf2) were determined. Mitochondrial morphology was observed using transmission electron microscopy (TEM). Keloid fibroblasts (KFs) were isolated from keloid tissues, and treated with ferroptosis inhibitor ferrostatin-1 (fer-1) or ferroptosis activator erastin. Iron content, ferroptosis-related marker levels, LPO level, mitochondrial membrane potential, ATP content, and mitochondrial morphology in KFs were detected. Furthermore, the protein levels of α-smooth muscle actin (α-SMA), collagen I, and collagen III were measured to investigate whether ferroptosis affect fibrosis in KFs. Results We found that iron content and LPO level were substantially elevated in keloid tissues and KFs. SLC7A11, GPX4, and Nrf2 were downregulated and TFRC was upregulated in keloid tissues and KFs. Mitochondria in keloid tissues and KFs exhibited ferroptosis-related pathology. Fer-1 treatment reduced iron content, restrained ferroptosis and mitochondrial dysfunction in KFs, Moreover, ferrostatin-1 restrained the protein expression of α-SMA, collagen I, and collagen III in KFs. Whereas erastin treatment showed the opposite results. Conclusion Ferroptosis exists in keloid. Ferrostatin-1 restrained ECM deposition and fibrosis in keloid through inhibiting ferroptosis, and erastin induced ECM deposition and fibrosis through intensifying ferroptosis.
Collapse
Affiliation(s)
- Liu Yang
- Plastic & Cosmetics Surgery Department, Zibo Central Hospital, Zibo, China
| | - Xiuli Li
- Plastic & Cosmetics Surgery Department, Zibo Central Hospital, Zibo, China
| | - Yanli Wang
- Plastic & Cosmetics Surgery Department, Zibo Central Hospital, Zibo, China
| |
Collapse
|
13
|
Murakami T, Shigeki S. Pharmacotherapy for Keloids and Hypertrophic Scars. Int J Mol Sci 2024; 25:4674. [PMID: 38731893 PMCID: PMC11083137 DOI: 10.3390/ijms25094674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Keloids (KD) and hypertrophic scars (HTS), which are quite raised and pigmented and have increased vascularization and cellularity, are formed due to the impaired healing process of cutaneous injuries in some individuals having family history and genetic factors. These scars decrease the quality of life (QOL) of patients greatly, due to the pain, itching, contracture, cosmetic problems, and so on, depending on the location of the scars. Treatment/prevention that will satisfy patients' QOL is still under development. In this article, we review pharmacotherapy for treating KD and HTS, including the prevention of postsurgical recurrence (especially KD). Pharmacotherapy involves monotherapy using a single drug and combination pharmacotherapy using multiple drugs, where drugs are administered orally, topically and/or through intralesional injection. In addition, pharmacotherapy for KD/HTS is sometimes combined with surgical excision and/or with physical therapy such as cryotherapy, laser therapy, radiotherapy including brachytherapy, and silicone gel/sheeting. The results regarding the clinical effectiveness of each mono-pharmacotherapy for KD/HTS are not always consistent but rather scattered among researchers. Multimodal combination pharmacotherapy that targets multiple sites simultaneously is more effective than mono-pharmacotherapy. The literature was searched using PubMed, Google Scholar, and Online search engines.
Collapse
Affiliation(s)
- Teruo Murakami
- Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan;
| | - Sadayuki Shigeki
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima 731-2631, Japan
| |
Collapse
|
14
|
Wang J, Patel P, Jagdeo J. An analysis of keloid patient questions on Reddit. Wound Repair Regen 2024; 32:164-170. [PMID: 38372454 DOI: 10.1111/wrr.13160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Reddit is one of the world's leading social media platforms, fostering active community discussions on a variety of topics including keloids. The prevalence and reach of conversations on Reddit underscore the need to investigate and understand patient perspectives and gaps in knowledge. Herein, we present an in-depth analysis of questions and concerns of Reddit users on keloids, offering valuable insights into patient experiences, knowledge gaps and treatment preferences. The study presents a distinct approach by harnessing the power of social media data to understand patient perspectives, which may not be readily apparent in clinical settings. All posts on the 'Hot' page of the subreddit r/Keloids were analyzed. Questions were categorized and subcategorized to reveal common themes. A total of 644 questions from 513 posts between 26 March 2017 and 28 August 2023 were identified and analyzed. Reddit users most frequently asked questions regarding keloid management (57.5%). Other common categories included uncertainty regarding diagnosis or symptoms (15.1%), living with keloids (7.5%) and causes or triggers (6.2%). This analysis highlights critical areas of patient knowledge gaps and potential misconceptions regarding keloids. For dermatologists, understanding these patient questions is crucial. Such insights allow for patient-centric education and treatments, ensuring more effective and comprehensive care.
Collapse
Affiliation(s)
- Jennifer Wang
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, New York, USA
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York, USA
| | - Paras Patel
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York, USA
- Rowan University School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Jared Jagdeo
- Department of Dermatology, State University of New York, Downstate Health Sciences University, Brooklyn, New York, USA
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System, Brooklyn, New York, USA
| |
Collapse
|
15
|
Zhang Y, Zhang X, Yu A. Expression of macrophage activation‑specific factors in hyperplastic scar tissue during hyperplasia phase by antibody array blotting membrane assay and its clinical significance. Exp Ther Med 2024; 27:116. [PMID: 38361512 PMCID: PMC10867714 DOI: 10.3892/etm.2024.12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
The expression of macrophage activation-specific factors in hyperplastic scar (HS) tissues during hyperplasia phase was detected by antibody array imprinted membrane method and the role of macrophage activation in the natural evolution of HS was explored. A total of 83 patients with HS admitted to the Affiliated Hospital of Beihua University (Jilin, China) between February 2021 and July 2021 were enrolled. The clinical data of the patients were retrospectively analyzed. These patients were divided into the hyperplasia HS group (n=26) and the decline HS group (the HS tissues ceased to grow and were in regression periods; n=57) according to the time of scar formation and clinical characteristics. The HS tissues were collected from patients in both groups. The contents of IL-12, IL-10, VEGF and basic fibroblast growth factor (bFGF) were detected by antibody array imprinted membrane method and the contents of IL-12, IL-10, VEGF and bFGF in tissues with various groups of tissues and clinical features were compared. The connection between macrophage activation-specific factors with VEGF and bFGF was analyzed using Pearson correlation analysis. The contents of IL-10 (9.48±1.06), VEGF (24.15±2.64) and bFGF (37.48±2.56) were much lower and IL-12 levels (16.45±0.85) were strongly higher in hyperplasia HS group compared with those in the decline HS group (14.56±1.26 for IL-10, 27.85±2.63 for VEGF, 43.15±3.16 for bFGF and 10.46±0.75 for IL-12, P<0.001). In the hyperplasia HS group, the contents of IL-10, VEGF and bFGF were obviously higher and the IL-12 levels were markedly lower in patients with age ≥30 years, protuberance height <2 mm, soft flexibility, low hyperemia degree and no concomitant symptoms than those in the patients with age <30 years, protuberance height ≥2 mm, hard flexibility, high hyperemia degree and concomitant symptoms (P<0.001). Pearson correlation analysis showed that IL-12 was negatively correlated with VEGF and bFGF (r=-0.328, 0.600, P<0.01). IL-10 was positively correlated with VEGF and bFGF (r=0.486, 0.684, respectively, P<0.001). In conclusion, macrophage activation-specific factors were abnormally expressed in hyperplasia HS, mainly M1 macrophages, accompanied by severe inflammatory reaction. The transformation of M1 macrophage into M2 macrophage usually occurred during the declining HS phase, which accelerated scar formation by promoting the formation of fibroblasts and angiogenesis. Detection of macrophage activation-specific factors may contribute to evaluate the clinical stage of HS.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Dermatology, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Xiaodong Zhang
- Department of Dermatology, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Aiping Yu
- Department of Ultrasound, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| |
Collapse
|
16
|
Wang Y, Chen S, Bao S, Yao L, Wen Z, Xu L, Chen X, Guo S, Pang H, Zhou Y, Zhou P. Deciphering the fibrotic process: mechanism of chronic radiation skin injury fibrosis. Front Immunol 2024; 15:1338922. [PMID: 38426100 PMCID: PMC10902513 DOI: 10.3389/fimmu.2024.1338922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-β) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.
Collapse
Affiliation(s)
- Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shuilan Bao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Li Yao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Lixia Xu
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Xiaoman Chen
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zhou
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Tomtschik J, Anand N, Bustos SS, Martinez-Jorge J, Wyles SP. Practical management of hypertrophic scarring: the mayo clinic experience. Arch Dermatol Res 2024; 316:77. [PMID: 38244097 DOI: 10.1007/s00403-023-02802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024]
Abstract
Hypertrophic scarring is a potential consequence of wound healing that causes functional and aesthetic disability. Common treatments include intralesional pharmacotherapy (e.g., triamcinolone), surgical excision, and energy-based laser devices. While numerous treatment methods have been described for hypertrophic scarring, an optimal treatment strategy has yet to be established given variability in clinical presentation. This study aims to identify patient- and provider-preferred treatment patterns. This is a single-center, retrospective study of adult patients that developed post-surgical hypertrophic scarring between 2007 and 2017. Specifically, trends in procedural management for hypertrophic scarring among this cohort were examined. A total of 442 procedures (intralesional steroid injection, surgical excision, laser-based treatment) were identified in 218 patients with a clinical diagnosis of hypertrophic scarring. Approximately 73% were female; 87% were Caucasian. The median age at first procedure was 45.6 years (SD = 17.4). The most frequent anatomical locations for procedures were the trunk (n = 242; 54.8%), followed by head/neck (n = 86; 19.5%), upper extremities (n = 67; 15.2%), and lower extremities (n = 45; 10.2%). Procedural therapies included intralesional steroid injection (n = 221; 50%), surgical excision (n = 112; 25.3%) and laser (fractional non-ablative laser vs. pulsed dye laser; n = 109; 24.5%). Treatment modality varied by stage of treatment, scar anatomical location, and scar size. This single-center series of patients with hypertrophic scarring highlights a patient-centered management approach and offers clinical guidelines for provider-patient shared decision making.
Collapse
Affiliation(s)
- Julia Tomtschik
- Department of Dermatology, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA.
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Nimay Anand
- Department of Dermatology, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
| | - Samyd S Bustos
- Division of Plastic and Reconstructive Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Saranya P Wyles
- Department of Dermatology, Mayo Clinic, 200 First Street S.W., Rochester, MN, 55905, USA
- Center for Regenerative Medicine and Biotherapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
Boo YC. Insights into How Plant-Derived Extracts and Compounds Can Help in the Prevention and Treatment of Keloid Disease: Established and Emerging Therapeutic Targets. Int J Mol Sci 2024; 25:1235. [PMID: 38279232 PMCID: PMC10816582 DOI: 10.3390/ijms25021235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Keloid is a disease in which fibroblasts abnormally proliferate and synthesize excessive amounts of extracellular matrix, including collagen and fibronectin, during the healing process of skin wounds, causing larger scars that exceed the boundaries of the original wound. Currently, surgical excision, cryotherapy, radiation, laser treatment, photodynamic therapy, pressure therapy, silicone gel sheeting, and pharmacotherapy are used alone or in combinations to treat this disease, but the outcomes are usually unsatisfactory. The purpose of this review is to examine whether natural products can help treat keloid disease. I introduce well-established therapeutic targets for this disease and various other emerging therapeutic targets that have been proposed based on the phenotypic difference between keloid-derived fibroblasts (KFs) and normal epidermal fibroblasts (NFs). We then present recent studies on the biological effects of various plant-derived extracts and compounds on KFs and NFs. Associated ex vivo, in vivo, and clinical studies are also presented. Finally, we discuss the mechanisms of action of the plant-derived extracts and compounds, the pros and cons, and the future tasks for natural product-based therapy for keloid disease, as compared with existing other therapies. Extracts of Astragalus membranaceus, Salvia miltiorrhiza, Aneilema keisak, Galla Chinensis, Lycium chinense, Physalis angulate, Allium sepa, and Camellia sinensis appear to modulate cell proliferation, migration, and/or extracellular matrix (ECM) production in KFs, supporting their therapeutic potential. Various phenolic compounds, terpenoids, alkaloids, and other plant-derived compounds could modulate different cell signaling pathways associated with the pathogenesis of keloids. For now, many studies are limited to in vitro experiments; additional research and development are needed to proceed to clinical trials. Many emerging therapeutic targets could accelerate the discovery of plant-derived substances for the prevention and treatment of keloid disease. I hope that this review will bridge past, present, and future research on this subject and provide insight into new therapeutic targets and pharmaceuticals, aiming for effective keloid treatment.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
19
|
Liu L, Lu L, Qiu M, Han N, Dai S, Shi S, He S, Zhang J, Yan Q, Chen S. Comprehensive modular analyses of scar subtypes illuminate underlying molecular mechanisms and potential therapeutic targets. Int Wound J 2024; 21:e14384. [PMID: 37697692 PMCID: PMC10784627 DOI: 10.1111/iwj.14384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
Pathological scarring resulting from traumas and wounds, such as hypertrophic scars and keloids, pose significant aesthetic, functional and psychological challenges. This study provides a comprehensive transcriptomic analysis of these conditions, aiming to illuminate underlying molecular mechanisms and potential therapeutic targets. We employed a co-expression and module analysis tool to identify significant gene clusters associated with distinct pathophysiological processes and mechanisms, notably lipid metabolism, sebum production, cellular energy metabolism and skin barrier function. This examination yielded critical insights into several skin conditions including folliculitis, skin fibrosis, fibrosarcoma and congenital ichthyosis. Particular attention was paid to Module Cluster (MCluster) 3, encompassing genes like BLK, TRPV1 and GABRD, all displaying high expression and potential implications in immune modulation. Preliminary immunohistochemistry validation supported these findings, showing elevated expression of these genes in non-fibrotic samples rich in immune activity. The complex interplay of different cell types in scar formation, such as fibroblasts, myofibroblasts, keratinocytes and mast cells, was also explored, revealing promising therapeutic strategies. This study underscores the promise of targeted gene therapy for pathological scars, paving the way for more personalised therapeutic approaches. The results necessitate further research to fully ascertain the roles of these identified genes and pathways in skin disease pathogenesis and potential therapeutics. Nonetheless, our work forms a strong foundation for a new era of personalised medicine for patients suffering from pathological scarring.
Collapse
Affiliation(s)
- Liang Liu
- College of Life SciencesZhejiang UniversityHangzhouChina
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouChina
| | - Lantian Lu
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaAustralia
| | - Min Qiu
- Hangzhou Neoantigen Therapeutics Co., LtdHangzhouChina
| | - Ning Han
- Hangzhou AI‐Nano Therapeutics Co., Ltd.HangzhouChina
| | - Shijie Dai
- School of Life SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Shuiping Shi
- Hangzhou Neoantigen Therapeutics Co., LtdHangzhouChina
| | - Shanshan He
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Jing Zhang
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Qingfeng Yan
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Shuqing Chen
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
20
|
Tosa M, Abe Y, Egawa S, Hatakeyama T, Iwaguro C, Mitsugi R, Moriyama A, Sano T, Ogawa R, Tanaka N. The HEDGEHOG-GLI1 pathway is important for fibroproliferative properties in keloids and as a candidate therapeutic target. Commun Biol 2023; 6:1235. [PMID: 38062202 PMCID: PMC10703807 DOI: 10.1038/s42003-023-05561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Keloids are benign fibroproliferative skin tumors caused by aberrant wound healing that can negatively impact patient quality of life. The lack of animal models has limited research on pathogenesis or developing effective treatments, and the etiology of keloids remains unknown. Here, we found that the characteristics of stem-like cells from keloid lesions and the surrounding dermis differ from those of normal skin. Furthermore, the HEDGEHOG (HH) signal and its downstream transcription factor GLI1 were upregulated in keloid patient-derived stem-like cells. Inhibition of the HH-GLI1 pathway reduced the expression of genes involved in keloids and fibrosis-inducing cytokines, including osteopontin. Moreover, the HH signal inhibitor vismodegib reduced keloid reconstituted tumor size and keloid-related gene expression in nude mice and the collagen bundle and expression of cytokines characteristic for keloids in ex vivo culture of keloid tissues. These results implicate the HH-GLI1 pathway in keloid pathogenesis and suggest therapeutic targets of keloids.
Collapse
Affiliation(s)
- Mamiko Tosa
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yoshinori Abe
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Seiko Egawa
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Tomoka Hatakeyama
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Chihiro Iwaguro
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Ryotaro Mitsugi
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Ayaka Moriyama
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Takumi Sano
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
21
|
Kim EY, Hussain A, Khachemoune A. Evidence-based management of keloids and hypertrophic scars in dermatology. Arch Dermatol Res 2023; 315:1487-1495. [PMID: 36504113 DOI: 10.1007/s00403-022-02509-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
While normal, controlled wound-healing results in scars that are nearly imperceptible, hypertrophic scars (HTS) and keloids are the result of an abnormal wound-healing process that can leave unsightly, difficult-to-treat lesions. While such scars are classically associated with surgical incisions, they may also result from burns or accidental trauma to the skin. Several different measures can be taken to prevent the formation of scars or treat those that have already formed. Prevention focuses on reducing inflammation during the wound-healing process, and minimizing tension in the lesion when appropriate. Treatments range from non-invasive modalities such as pressure therapy, topicals, and symptom management, to invasive methods such as injections, lasers, and even surgery. While some treatments, such as corticosteroid injections, have been used in the treatment of HTS and keloids for decades, other newer therapies have only been described in case reports or are still in early phases of clinical trials. Because optimal scar management will not be the same for every patient, further investigation of newer agents and methods is warranted and may benefit a great number of patients. This paper will review the evidence-based management of scars, including current widely used treatment options and promising newly emerging therapies.
Collapse
Affiliation(s)
- Emily Y Kim
- Georgetown University School of Medicine, Washington, DC, USA
| | - Aamir Hussain
- MedStar Washington Hospital Center/Georgetown University Dermatology Residency Program, Washington, DC, USA
| | - Amor Khachemoune
- Department of Dermatology, Veterans Affairs Medical Center, SUNY Downstate, 800 Poly Place, Brooklyn, NY, 11209, USA.
- Department of Dermatology, Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, USA.
| |
Collapse
|
22
|
Sutedja EK, Sundani A, Ruchiatan K, Sutedja E. Spring-Powered Needle-Free Injection of Triamcinolone Acetonide and 5-Fluorouracil for Keloid Treatment. Clin Cosmet Investig Dermatol 2023; 16:1659-1665. [PMID: 37396709 PMCID: PMC10314751 DOI: 10.2147/ccid.s415789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
Introduction Keloid is an abnormal fibroproliferative healing response characterized by excessive and invasive tissue growth beyond the wound boundaries. The conventional treatment involves injecting drugs such as triamcinolone acetonide (TA), 5-fluorouracil (5-FU), or their combination intralesionally. However, the pain associated with injections often leads to low patient compliance and treatment failure. The spring-powered needle-free injector (NFI) provides an affordable alternative option for drug delivery with reduced pain. Case This case report presents a 69-year-old female patient with a keloid treated using a spring-powered needle-free injector (NFI) for drug delivery. The keloid was assessed using the Vancouver Scar Scale (VSS) and the Patient and Observer Scar Assessment Scale (POSAS). The patient's pain level was measured using the Numeric Pain Rating Scale (NPRS). TA and 5-FU mixed with lidocaine were loaded into the NFI and injected at a dose of 0.1 mL/cm2. The treatment was repeated twice a week. After four sessions, the keloid flattened by 0.5 cm, VSS score decreased from 11 to 10, and POSAS scores decreased from 49 to 43 (observer) and from 50 to 37 (patient). The NPRS during each procedure was 1, indicating minimal pain. Discussion The spring-powered NFI is a simple and cost-effective device that operates based on Hooke's law, producing a high-pressure fluid jet for effective skin penetration. The NFI demonstrated effectiveness in treating keloid lesions, resulting in visible improvement after four treatments. Conclusion The spring-powered NFI offers an affordable and painless alternative to keloid treatment.
Collapse
Affiliation(s)
- Eva Krishna Sutedja
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Annisa Sundani
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Kartika Ruchiatan
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| | - Endang Sutedja
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran - Dr. Hasan Sadikin Hospital, Bandung, West Java, Indonesia
| |
Collapse
|
23
|
Xia Y, Wang Y, Hao Y, Shan M, Liu H, Liang Z, Kuang X. Deciphering the single-cell transcriptome network in keloids with intra-lesional injection of triamcinolone acetonide combined with 5-fluorouracil. Front Immunol 2023; 14:1106289. [PMID: 37275903 PMCID: PMC10235510 DOI: 10.3389/fimmu.2023.1106289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Objectives Keloid is a highly aggressive fibrotic disease resulting from excessive extracellular matrix deposition after dermal injury. Intra-lesional injection of triamcinolone acetonide (TAC) in combination with 5-fluorouracil (5-FU) is a commonly used pharmacological regimen and long-term repeated injections can achieve sustained inhibition of keloid proliferation. However, the molecular mechanisms underlying the inhibitory effect on keloids remain insufficiently investigated. Methods and materials This study performed single-cell RNA sequencing analysis of keloids treated with TAC+5-FU injections, keloids, and skins to explore patterns of gene expression regulation and cellular reprogramming. Results The results revealed that TAC+5-FU interrupted the differentiation trajectory of fibroblasts toward pro-fibrotic subtypes and induced keloid atrophy possibly by inhibiting the FGF signaling pathway in intercellular communication. It also stimulated partial fibroblasts to develop the potential for self-replication and multidirectional differentiation, which may be a possible cellular source of keloid recurrence. T cell dynamics demonstrated elevated expression of secretory globulin family members, which may be possible immunotherapeutic targets. Schwann cell populations achieved functional changes by increasing the proportion of apoptotic or senescence-associated cell populations and reducing cell clusters that promote epidermal development and fibroblast proliferation. Conclusions Our findings elucidated the molecular and cellular reprogramming of keloids by intra-lesional injection of TAC+5-FU, which will provide new insights to understand the mechanism of action and therapeutic targets.
Collapse
Affiliation(s)
- Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zhengyun Liang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xinwen Kuang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Ma L, Hua L, Yu W, Ke L, Li LY. TSG-6 inhibits hypertrophic scar fibroblast proliferation by regulating IRE1α/TRAF2/NF-κB signalling. Int Wound J 2023; 20:1008-1019. [PMID: 36056472 PMCID: PMC10031217 DOI: 10.1111/iwj.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
TNF-stimulated gene (TSG-6) was reported to suppress hypertrophic scar (HS) formation in a rabbit ear model, and the overexpression of TSG-6 in human HS fibroblasts (HSFs) was found to induce their apoptotic death. The molecular basis for these findings, however, remains to be clarified. HSFs were subjected to TSG-6 treatment. Treatment with TSG-6 significantly suppressed HSF proliferation and induced them to undergo apoptosis. Moreover, TSG-6 exposure led to reductions in collagen I, collagen III, and α-SMA mRNA and protein levels, with a corresponding drop in proliferating cell nuclear antigen (PCNA) expression indicative of impaired proliferative activity. Endoplasmic reticulum (ER) stress was also suppressed in these HSFs as demonstrated by decreases in Bip and p-IRE1α expression, downstream inositol requiring enzyme 1 alpha (IRE1α) -Tumor necrosis factor receptor associated factor 2 (TRAF2) pathway signalling was inhibited and treated cells failed to induce NF-κB, TNF-α, IL-1β, and IL-6 expression. Overall, ER stress was found to trigger inflammatory activity in HSFs via the IRE1α-TRAF2 axis, as confirmed with the specific inhibitor of IRE1α STF083010. Additionally, the effects of TSG-6 on apoptosis, collagen I, collagen III, α-SMA, and PCNA of HSFs were reversed by the IRE1α activator thapsigargin (TG). These data suggest that TSG-6 administration can effectively suppress the proliferation of HSFs in part via the inhibition of IRE1α-mediated ER stress-induced inflammation (IRE1α/TRAF2/NF-κB signalling).
Collapse
Affiliation(s)
- Li Ma
- Clinical College of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Lei Hua
- Department of Neurology, the Affiliated Nanjing city Hospital of Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenyuan Yu
- Department of Plastic and Cosmetic Surgery, the Second Affiliated Hospital of Soochow University, SuZhou City, PR China
| | - Li Ke
- Department of Thoracic Surgery, the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, China
| | - Liang-Yong Li
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
25
|
Liang Z, Zhang M, Hao Y, Shan M, Liu H, Xia Y, Chen Q, Chang G, Wang Y. Risk factors associated with keloid infections: A five-year retrospective study. Int Wound J 2023. [PMID: 36746767 DOI: 10.1111/iwj.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
Keloid infections reduce patient-reported quality of life greatly. Characteristics and risk factors of keloid infections have not been thoroughly studied. So, a retrospective cohort study was conducted focusing on the potential risk factors, microbiologic cultures and histological findings. Keloid patients consulting for surgical interventions were included in this study. Data were collected from their electronic medical records. 564 patients were recruited with the keloid infection rate being 22.4%. For adult patients, age above 40 years (OR, 2.84; P = .000), disease duration of 12 years or more (OR, 3.03; P = .000), the number of keloids over 3 (OR, 1.59; P = .050) and the presence of family history (OR, 1.91; P = .027) were significantly associated with keloid infections. Suppurative keloids were located mostly in thorax (61.79%). For the under-age subgroup(n = 25), family history was frequently seen in patients with infections. Microbiologic cultures revealed a mixed spectrum of bacteria including Staphylococcus (25%), Actinomyces (30%) and Prevotella (10%). The rate of epidermoid cysts was 19.7% in histological examination. Age > 40 years, disease duration ≥12 years, the number of keloids >3 and the presence of family history are risk factors for keloid infections.
Collapse
Affiliation(s)
- Zhengyun Liang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China.,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China.,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China.,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China.,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiao Chen
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Guojing Chang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
26
|
Zhang Y, Li X, Liu W, Hu G, Gu H, Cui X, Zhang D, Zeng W, Xia Y. TWEAK/Fn14 signaling may function as a reactive compensatory mechanism against extracellular matrix accumulation in keloid fibroblasts. Eur J Cell Biol 2023; 102:151290. [PMID: 36709605 DOI: 10.1016/j.ejcb.2023.151290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023] Open
Abstract
Overabundance of the extracellular matrix resulting from hyperproliferation of keloid fibroblasts (KFs) and dysregulation of apoptosis represents the main pathophysiology underlying keloids. TWEAK is a weak apoptosis inducer, and it plays a critical role in pathological tissue remodeling via its receptor, Fn14. However, the role of TWEAK/Fn14 signaling in the pathogenesis of keloids has not been investigated. In this study, we confirmed the overexpression levels of TWEAK and Fn14 in clinical keloid tissue specimens and primary KFs. The extracellular matrix (ECM)-related genes were also evaluated between primary KFs and their normal counterparts to determine the factors leading to the formation or development of keloids. Unexpectedly, exogenous TWEAK significantly reduced the levels of collagen I and collagen III, as well as alpha-smooth muscle actin (α-SMA). Additionally, TWEAK promoted MMPs expression and apoptosis activity of KFs. Furthermore, we verified that the inhibitory effect of TWEAK on KFs is through down-regulation of Polo-like kinase 5, which modulates cell differentiation and apoptosis. The TWEAK-Fn14 axis seems to be a secondary, although less effective, compensatory mechanism to increase the catabolic functions of fibroblasts in an attempt to further decrease the accumulation of collagen. DATA AVAILABILITY: All data generated or analyzed during this study are included in this published article (and its Supporting Information files).
Collapse
Affiliation(s)
- Yitian Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaoli Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004 China
| | - Wei Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Guanglei Hu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hanjiang Gu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiao Cui
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Dewu Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
27
|
Breugnot J, Rouaud‐Tinguely P, Gilardeau S, Rondeau D, Bordes S, Aymard E, Closs B. Utilizing deep learning for dermal matrix quality assessment on in vivo line-field confocal optical coherence tomography images. Skin Res Technol 2023; 29:e13221. [PMID: 36366860 PMCID: PMC9838780 DOI: 10.1111/srt.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Line-field confocal optical coherence tomography (LC-OCT) is an imaging technique providing non-invasive "optical biopsies" with an isotropic spatial resolution of ∼1 μm and deep penetration until the dermis. Analysis of obtained images is classically performed by experts, thus requiring long and fastidious training and giving operator-dependent results. In this study, the objective was to develop a new automated method to score the quality of the dermal matrix precisely, quickly, and directly from in vivo LC-OCT images. Once validated, this new automated method was applied to assess photo-aging-related changes in the quality of the dermal matrix. MATERIALS AND METHODS LC-OCT measurements were conducted on the face of 57 healthy Caucasian volunteers. The quality of the dermal matrix was scored by experts trained to evaluate the fibers' state according to four grades. In parallel, these images were used to develop the deep learning model by adapting a MobileNetv3-Small architecture. Once validated, this model was applied to the study of dermal matrix changes on a panel of 36 healthy Caucasian females, divided into three groups according to their age and photo-exposition. RESULTS The deep learning model was trained and tested on a set of 15 993 images. Calculated on the test data set, the accuracy score was 0.83. As expected, when applied to different volunteer groups, the model shows greater and deeper alteration of the dermal matrix for old and photoexposed subjects. CONCLUSIONS In conclusion, we have developed a new method that automatically scores the quality of the dermal matrix on in vivo LC-OCT images. This accurate model could be used for further investigations, both in the dermatological and cosmetic fields.
Collapse
|
28
|
Veronese S, Brunetti B, Minichino AM, Sbarbati A. Vacuum and Electromagnetic Fields Treatment to Regenerate a Diffuse Mature Facial Scar Caused by Sulfuric Acid Assault. Bioengineering (Basel) 2022; 9:799. [PMID: 36551005 PMCID: PMC9774184 DOI: 10.3390/bioengineering9120799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Acid attacks are on the rise, and they cause extensive and deep burns, especially on the face. The treatments used to improve the aesthetic, functional and social impact of non-acid scars do not always prove useful for acid scars. This article reports the case of a woman with an extended, mature, acid facial scar, caused by sulfuric acid assault, treated with a recent new procedure that combines the application of vacuum and electromagnetic fields. Before and after the treatment, the aesthetic appearance, and motor function of the face and neck were evaluated, as well as the level of hydration, the amount of sebum, the elasticity, and the pH of the skin. The improvements highlighted after the treatment of the aesthetic and functional characteristics of the face and neck, and of the physical parameters of the skin seemed to indicate that this particular treatment induces tissue regeneration, even in the nerve component. However, it is evident that the rehabilitation pathways of facial wounds and scars must be personalized, and must include continuous psychological support for the patient.
Collapse
Affiliation(s)
- Sheila Veronese
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | | | | | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| |
Collapse
|
29
|
Reply Re: “Direct Injection of 5-Fluorouracil Improves Outcomes in Cicatrizing Conjunctival Disorders Secondary to Systemic Disease”. Ophthalmic Plast Reconstr Surg 2022; 38:208-210. [DOI: 10.1097/iop.0000000000002144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
ANALYSIS OF CLINICAL PARAMETERS OF SCAR TISSUE OF THE SCALP AND NECK DEPENDING ON THE CIRCADIAN RHYTHM OF THE PATIENT. WORLD OF MEDICINE AND BIOLOGY 2022. [DOI: 10.26724/2079-8334-2022-2-80-141-146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
CLINICAL CHARACTERISTICS OF POSTOPERATIVE SKIN SCARS IN PATIENTS WITH DIFFERENT CIRCADIAN RHYTHMS USING THE PLACENTA CRYOEXTRACT. WORLD OF MEDICINE AND BIOLOGY 2021. [DOI: 10.26724/2079-8334-2021-4-78-7-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|