1
|
Surie D, Yuengling KA, DeCuir J, Zhu Y, Lauring AS, Gaglani M, Ghamande S, Peltan ID, Brown SM, Ginde AA, Martinez A, Mohr NM, Gibbs KW, Hager DN, Ali H, Prekker ME, Gong MN, Mohamed A, Johnson NJ, Srinivasan V, Steingrub JS, Leis AM, Khan A, Hough CL, Bender WS, Duggal A, Bendall EE, Wilson JG, Qadir N, Chang SY, Mallow C, Kwon JH, Exline MC, Shapiro NI, Columbus C, Vaughn IA, Ramesh M, Mosier JM, Safdar B, Casey JD, Talbot HK, Rice TW, Halasa N, Chappell JD, Grijalva CG, Baughman A, Womack KN, Swan SA, Johnson CA, Lwin CT, Lewis NM, Ellington S, McMorrow ML, Martin ET, Self WH. Severity of Respiratory Syncytial Virus vs COVID-19 and Influenza Among Hospitalized US Adults. JAMA Netw Open 2024; 7:e244954. [PMID: 38573635 PMCID: PMC11192181 DOI: 10.1001/jamanetworkopen.2024.4954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 04/05/2024] Open
Abstract
Importance On June 21, 2023, the Centers for Disease Control and Prevention recommended the first respiratory syncytial virus (RSV) vaccines for adults aged 60 years and older using shared clinical decision-making. Understanding the severity of RSV disease in adults can help guide this clinical decision-making. Objective To describe disease severity among adults hospitalized with RSV and compare it with the severity of COVID-19 and influenza disease by vaccination status. Design, Setting, and Participants In this cohort study, adults aged 18 years and older admitted to the hospital with acute respiratory illness and laboratory-confirmed RSV, SARS-CoV-2, or influenza infection were prospectively enrolled from 25 hospitals in 20 US states from February 1, 2022, to May 31, 2023. Clinical data during each patient's hospitalization were collected using standardized forms. Data were analyzed from August to October 2023. Exposures RSV, SARS-CoV-2, or influenza infection. Main Outcomes and Measures Using multivariable logistic regression, severity of RSV disease was compared with COVID-19 and influenza severity, by COVID-19 and influenza vaccination status, for a range of clinical outcomes, including the composite of invasive mechanical ventilation (IMV) and in-hospital death. Results Of 7998 adults (median [IQR] age, 67 [54-78] years; 4047 [50.6%] female) included, 484 (6.1%) were hospitalized with RSV, 6422 (80.3%) were hospitalized with COVID-19, and 1092 (13.7%) were hospitalized with influenza. Among patients with RSV, 58 (12.0%) experienced IMV or death, compared with 201 of 1422 unvaccinated patients with COVID-19 (14.1%) and 458 of 5000 vaccinated patients with COVID-19 (9.2%), as well as 72 of 699 unvaccinated patients with influenza (10.3%) and 20 of 393 vaccinated patients with influenza (5.1%). In adjusted analyses, the odds of IMV or in-hospital death were not significantly different among patients hospitalized with RSV and unvaccinated patients hospitalized with COVID-19 (adjusted odds ratio [aOR], 0.82; 95% CI, 0.59-1.13; P = .22) or influenza (aOR, 1.20; 95% CI, 0.82-1.76; P = .35); however, the odds of IMV or death were significantly higher among patients hospitalized with RSV compared with vaccinated patients hospitalized with COVID-19 (aOR, 1.38; 95% CI, 1.02-1.86; P = .03) or influenza disease (aOR, 2.81; 95% CI, 1.62-4.86; P < .001). Conclusions and Relevance Among adults hospitalized in this US cohort during the 16 months before the first RSV vaccine recommendations, RSV disease was less common but similar in severity compared with COVID-19 or influenza disease among unvaccinated patients and more severe than COVID-19 or influenza disease among vaccinated patients for the most serious outcomes of IMV or death.
Collapse
Affiliation(s)
- Diya Surie
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Katharine A. Yuengling
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jennifer DeCuir
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adam S. Lauring
- Department of Internal Medicine, University of Michigan, Ann Arbor
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor
| | - Manjusha Gaglani
- Baylor Scott & White Health, Temple, Texas
- Texas A&M University College of Medicine, Temple
- Baylor College of Medicine, Temple, Texas
| | - Shekhar Ghamande
- Baylor Scott & White Health, Temple, Texas
- Texas A&M University College of Medicine, Temple
- Baylor College of Medicine, Temple, Texas
| | - Ithan D. Peltan
- Department of Medicine, Intermountain Medical Center, Murray, Utah and University of Utah, Salt Lake City
| | - Samuel M. Brown
- Department of Medicine, Intermountain Medical Center, Murray, Utah and University of Utah, Salt Lake City
| | - Adit A. Ginde
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora
| | - Amanda Martinez
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora
| | | | - Kevin W. Gibbs
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David N. Hager
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Harith Ali
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew E. Prekker
- Department of Emergency Medicine, Hennepin County Medical Center, Minneapolis, Minnesota
| | - Michelle N. Gong
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Amira Mohamed
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Nicholas J. Johnson
- Department of Emergency Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle
| | | | - Jay S. Steingrub
- Department of Medicine, Baystate Medical Center, Springfield, Massachusetts
| | - Aleda M. Leis
- School of Public Health, University of Michigan, Ann Arbor
| | - Akram Khan
- Department of Medicine, Oregon Health and Sciences University, Portland
| | | | | | - Abhijit Duggal
- Department of Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Emily E. Bendall
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor
| | - Jennifer G. Wilson
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, California
| | - Nida Qadir
- Department of Medicine, University of California, Los Angeles
| | - Steven Y. Chang
- Department of Medicine, University of California, Los Angeles
| | | | - Jennie H. Kwon
- Department of Medicine, Washington University in St Louis, St Louis, Missouri
| | | | - Nathan I. Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Cristie Columbus
- Baylor Scott &White Health, Dallas, Texas
- Texas A&M University College of Medicine, Dallas
| | - Ivana A. Vaughn
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan
| | - Mayur Ramesh
- Division of Infectious Diseases, Henry Ford Health, Detroit, Michigan
| | | | - Basmah Safdar
- Yale University School of Medicine, New Haven, Connecticut
| | - Jonathan D. Casey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - H. Keipp Talbot
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Todd W. Rice
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James D. Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carlos G. Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adrienne Baughman
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kelsey N. Womack
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sydney A. Swan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cassandra A. Johnson
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cara T. Lwin
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nathaniel M. Lewis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sascha Ellington
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Meredith L. McMorrow
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Wesley H. Self
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
2
|
Mei X, Zhang Y, Wang S, Wang H, Chen R, Ma K, Yang Y, Jiang P, Feng Z, Zhang C, Zhang Z. Necroptosis in Pneumonia: Therapeutic Strategies and Future Perspectives. Viruses 2024; 16:94. [PMID: 38257794 PMCID: PMC10818625 DOI: 10.3390/v16010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pneumonia remains a major global health challenge, necessitating the development of effective therapeutic approaches. Recently, necroptosis, a regulated form of cell death, has garnered attention in the fields of pharmacology and immunology for its role in the pathogenesis of pneumonia. Characterized by cell death and inflammatory responses, necroptosis is a key mechanism contributing to tissue damage and immune dysregulation in various diseases, including pneumonia. This review comprehensively analyzes the role of necroptosis in pneumonia and explores potential pharmacological interventions targeting this cell death pathway. Moreover, we highlight the intricate interplay between necroptosis and immune responses in pneumonia, revealing a bidirectional relationship between necrotic cell death and inflammatory signaling. Importantly, we assess current therapeutic strategies modulating necroptosis, encompassing synthetic inhibitors, natural products, and other drugs targeting key components of the programmed necrosis pathway. The article also discusses challenges and future directions in targeting programmed necrosis for pneumonia treatment, proposing novel therapeutic strategies that combine antibiotics with necroptosis inhibitors. This review underscores the importance of understanding necroptosis in pneumonia and highlights the potential of pharmacological interventions to mitigate tissue damage and restore immune homeostasis in this devastating respiratory infection.
Collapse
Affiliation(s)
- Xiuzhen Mei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Yuchen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Shu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Hui Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Rong Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Ke Ma
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ping Jiang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixin Feng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| |
Collapse
|
3
|
Papayanni PG, Koukoulias K, Kuvalekar M, Watanabe A, Velazquez Y, Ramos CA, Leen AM, Vasileiou S. T cell immune profiling of respiratory syncytial virus for the development of a targeted immunotherapy. Br J Haematol 2023; 202:874-878. [PMID: 37323051 DOI: 10.1111/bjh.18933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Respiratory syncytial virus (RSV)-associated viral infections are a major public health problem affecting the immunologically naïve/compromised populations. Given the RSV-associated morbidity and the limited treatment options, we sought to characterize the cellular immune response to RSV to develop a targeted T cell therapy for off-the-shelf administration to immunocompromised individuals. Here we report on the immunological profiling, as well as manufacturing, characterization and antiviral properties of these RSV-targeted T cells. A randomized, phase 1/2 clinical trial evaluating their safety and activity in haematopoietic stem cell transplant recipients as an off-the-shelf multi-respiratory virus-directed product is currently underway (NCT04933968, https://clinicaltrials.gov).
Collapse
Affiliation(s)
- Penelope Georgia Papayanni
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| | - Kiriakos Koukoulias
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| | - Yovana Velazquez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| | - Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|