1
|
Montanucci L, Brünger T, Bhattarai N, Boßelmann CM, Kim S, Allen JP, Zhang J, Klöckner C, Krey I, Fariselli P, May P, Lemke JR, Myers SJ, Yuan H, Traynelis SF, Lal D. Ligand distances as key predictors of pathogenicity and function in NMDA receptors. Hum Mol Genet 2025; 34:128-139. [PMID: 39535073 PMCID: PMC11780861 DOI: 10.1093/hmg/ddae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Genetic variants in the genes GRIN1, GRIN2A, GRIN2B, and GRIN2D, which encode subunits of the N-methyl-D-aspartate receptor (NMDAR), have been associated with severe and heterogeneous neurologic and neurodevelopmental disorders, including early onset epilepsy, developmental and epileptic encephalopathy, intellectual disability, and autism spectrum disorders. Missense variants in these genes can result in gain or loss of the NMDAR function, requiring opposite therapeutic treatments. Computational methods that predict pathogenicity and molecular functional effects of missense variants are therefore crucial for therapeutic applications. We assembled 223 missense variants from patients, 631 control variants from the general population, and 160 missense variants characterized by electrophysiological readouts that show whether they can enhance or reduce the function of the receptor. This includes new functional data from 33 variants reported here, for the first time. By mapping these variants onto the NMDAR protein structures, we found that pathogenic/benign variants and variants that increase/decrease the channel function were distributed unevenly on the protein structure, with spatial proximity to ligands bound to the agonist and antagonist binding sites being a key predictive feature for both variant pathogenicity and molecular functional consequences. Leveraging distances from ligands, we developed two machine-learning based predictors for NMDA variants: a pathogenicity predictor which outperforms currently available predictors and the first molecular function (increase/decrease) predictor. Our findings can have direct application to patient care by improving diagnostic yield for genetic neurodevelopmental disorders and by guiding personalized treatment informed by the knowledge of the molecular disease mechanism.
Collapse
Affiliation(s)
- Ludovica Montanucci
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 1133 John Freeman Blvd, Houston, TX 77030, United States
| | - Tobias Brünger
- Cologne Center for Genomics, University of Cologne, University Hospital Cologne, Weyertal 115b, Cologne 50937, Germany
| | - Nisha Bhattarai
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44106, United States
| | - Christian M Boßelmann
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44106, United States
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - James P Allen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Philipp-Rosenthal-street 55, Leipzig 04103, Germany
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Philipp-Rosenthal-street 55, Leipzig 04103, Germany
| | - Piero Fariselli
- Department of Medical Sciences, University of Torino, Via Santena 19,Torino, 10123, Italy
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7 Av. des Hauts-Fourneaux, Esch-sur-Alzette, 4362, Luxembourg
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Philipp-Rosenthal-street 55, Leipzig 04103, Germany
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Dennis Lal
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 1133 John Freeman Blvd, Houston, TX 77030, United States
- Epilepsy Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44106, United States
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (M.I.T.) and Harvard, 415 Main St, Cambridge, MA 02142, United States
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, 415 Main St., Cambridge, MA 02142, United States
| |
Collapse
|
2
|
Charouf D, Miller D, Haddad L, White FA, Boustany RM, Obeid M. High Diagnostic Yield and Clinical Utility of Next-Generation Sequencing in Children with Epilepsy and Neurodevelopmental Delays: A Retrospective Study. Int J Mol Sci 2024; 25:9645. [PMID: 39273593 PMCID: PMC11395515 DOI: 10.3390/ijms25179645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Advances in genetics led to the identification of hundreds of epilepsy-related genes, some of which are treatable with etiology-specific interventions. However, the diagnostic yield of next-generation sequencing (NGS) in unexplained epilepsy is highly variable (10-50%). We sought to determine the diagnostic yield and clinical utility of NGS in children with unexplained epilepsy that is accompanied by neurodevelopmental delays and/or is medically intractable. A 5-year retrospective review was conducted at the American University of Beirut Medical Center to identify children who underwent whole exome sequencing (WES) or whole genome sequencing (WGS). Data on patient demographics, neurodevelopment, seizures, and treatments were collected. Forty-nine children underwent NGS with an overall diagnostic rate of 68.9% (27/38 for WES, and 4/7 for WGS). Most children (42) had neurodevelopmental delays with (18) or without (24) refractory epilepsy, and only three had refractory epilepsy without delays. The diagnostic yield was 77.8% in consanguineous families (18), and 61.5% in non-consanguineous families (26); consanguinity information was not available for one family. Genetic test results led to anti-seizure medication optimization or dietary therapies in six children, with subsequent improvements in seizure control and neurodevelopmental trajectories. Not only is the diagnostic rate of NGS high in children with unexplained epilepsy and neurodevelopmental delays, but also genetic testing in this population may often lead to potentially life-altering interventions.
Collapse
Affiliation(s)
- Daniel Charouf
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut P.O. Box 11-0236, Lebanon
| | - Derryl Miller
- Division of Child Neurology, Department of Neurology, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN 46202, USA
| | - Laith Haddad
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut P.O. Box 11-0236, Lebanon
| | - Fletcher A White
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rose-Mary Boustany
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut P.O. Box 11-0236, Lebanon
- Department of Biochemistry, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Makram Obeid
- Division of Child Neurology, Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Riad El Solh, Beirut P.O. Box 11-0236, Lebanon
- Division of Child Neurology, Department of Neurology, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Montanucci L, Brünger T, Bhattarai N, Boßelmann CM, Kim S, Allen JP, Zhang J, Klöckner C, Fariselli P, May P, Lemke JR, Myers SJ, Yuan H, Traynelis SF, Lal D. Distances from ligands as main predictive features for pathogenicity and functional effect of variants in NMDA receptors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.06.24306939. [PMID: 38766179 PMCID: PMC11100844 DOI: 10.1101/2024.05.06.24306939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Genetic variants in genes GRIN1 , GRIN2A , GRIN2B , and GRIN2D , which encode subunits of the N-methyl-D-aspartate receptor (NMDAR), have been associated with severe and heterogeneous neurologic diseases. Missense variants in these genes can result in gain or loss of the NMDAR function, requiring opposite therapeutic treatments. Computational methods that predict pathogenicity and molecular functional effects are therefore crucial for accurate diagnosis and therapeutic applications. We assembled missense variants: 201 from patients, 631 from general population, and 159 characterized by electrophysiological readouts showing whether they can enhance or reduce the receptor function. This includes new functional data from 47 variants reported here, for the first time. We found that pathogenic/benign variants and variants that increase/decrease the channel function were distributed unevenly on the protein structure, with spatial proximity to ligands bound to the agonist and antagonist binding sites being key predictive features. Leveraging distances from ligands, we developed two independent machine learning-based predictors for NMDAR missense variants: a pathogenicity predictor which outperforms currently available predictors (AUC=0.945, MCC=0.726), and the first binary predictor of molecular function (increase or decrease) (AUC=0.809, MCC=0.523). Using these, we reclassified variants of uncertain significance in the ClinVar database and refined a previous genome-informed epidemiological model to estimate the birth incidence of molecular mechanism-defined GRIN disorders. Our findings demonstrate that distance from ligands is an important feature in NMDARs that can enhance variant pathogenicity prediction and enable functional prediction. Further studies with larger numbers of phenotypically and functionally characterized variants will enhance the potential clinical utility of this method.
Collapse
|
5
|
Yan J, Kothur K, Innes EA, Han VX, Jones HF, Patel S, Tsang E, Webster R, Gupta S, Troedson C, Menezes MP, Antony J, Ardern-Holmes S, Tantsis E, Mohammad S, Wienholt L, Pires AS, Heng B, Guillemin GJ, Guller A, Gill D, Bandodkar S, Dale RC. Decreased cerebrospinal fluid kynurenic acid in epileptic spasms: A biomarker of response to corticosteroids. EBioMedicine 2022; 84:104280. [PMID: 36174397 PMCID: PMC9515432 DOI: 10.1016/j.ebiom.2022.104280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Epileptic (previously infantile) spasms is the most common epileptic encephalopathy occurring during infancy and is frequently associated with abnormal neurodevelopmental outcomes. Epileptic spasms have a diverse range of known (genetic, structural) and unknown aetiologies. High dose corticosteroid treatment for 4 weeks often induces remission of spasms, although the mechanism of action of corticosteroid is unclear. Animal models of epileptic spasms have shown decreased brain kynurenic acid, which is increased after treatment with the ketogenic diet. We quantified kynurenine pathway metabolites in the cerebrospinal fluid (CSF) of infants with epileptic spasms and explored clinical correlations. Methods A panel of nine metabolites in the kynurenine pathway (tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, xanthurenic acid, anthranilic acid, 3-hydroxyanthranilic acid, quinolinic acid, and picolinic acid) were measured using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). CSF collected from paediatric patients less than 3 years of age with epileptic spasms (n=34, 19 males, mean age 0.85, median 0.6, range 0.3–3 yrs) were compared with other epilepsy syndromes (n=26, 9 males, mean age 1.44, median 1.45, range 0.3–3 yrs), other non-inflammatory neurological diseases (OND) (n=29, 18 males, mean age 1.47, median 1.6, range 0.1–2.9 yrs) and inflammatory neurological controls (n=12, 4 males, mean age 1.80, median 1.80, range 0.8–2.5 yrs). Findings There was a statistically significant decrease of CSF kynurenic acid in patients with epileptic spasms compared to OND (p<0.0001). In addition, the kynurenic acid/kynurenine (KYNA/KYN) ratio was lower in the epileptic spasms subgroup compared to OND (p<0.0001). Epileptic spasms patients who were steroid responders or partial steroid responders had lower KYNA/KYN ratio compared to patients who were refractory to steroids (p<0.005, p<0.05 respectively). Interpretation This study demonstrates decreased CSF kynurenic acid and KYNA/KYN in epileptic spasms, which may also represent a biomarker for steroid responsiveness. Given the anti-inflammatory and neuroprotective properties of kynurenic acid, further therapeutics able to increase kynurenic acid should be explored. Funding Financial support for the study was granted by Dale NHMRC Investigator grant APP1193648, Petre Foundation, Cerebral Palsy Alliance and Department of Biochemistry at the Children's Hospital at Westmead. Prof Guillemin is funded by NHMRC Investigator grant APP1176660 and Macquarie University.
Collapse
Affiliation(s)
- Jingya Yan
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Kavitha Kothur
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Emily A Innes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Velda X Han
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Hannah F Jones
- Starship Hospital, Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Erica Tsang
- Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Richard Webster
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Christopher Troedson
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Manoj P Menezes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Jayne Antony
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Simone Ardern-Holmes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Esther Tantsis
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Louise Wienholt
- Department of Clinical Immunology and Allergy, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ananda S Pires
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Benjamin Heng
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia
| | - Anna Guller
- Computational NeuroSurgery Lab, Macquarie University, Sydney, NSW, Australia
| | - Deepak Gill
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, The University of Sydney, Westmead, New South Wales, Australia
| | - Sushil Bandodkar
- Department of Biochemistry, The Children's Hospital at Westmead, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Clinical School, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia.
| |
Collapse
|