He Z, Pfaff E, Guo SJ, Guo Y, Wu Y, Tao C, Stiglic G, Bian J. Enriching Real-world Data with Social Determinants of Health for Health Outcomes and Health Equity: Successes, Challenges, and Opportunities.
Yearb Med Inform 2023;
32:253-263. [PMID:
38147867 PMCID:
PMC10751148 DOI:
10.1055/s-0043-1768732]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
OBJECTIVE
To summarize the recent methods and applications that leverage real-world data such as electronic health records (EHRs) with social determinants of health (SDoH) for public and population health and health equity and identify successes, challenges, and possible solutions.
METHODS
In this opinion review, grounded on a social-ecological-model-based conceptual framework, we surveyed data sources and recent informatics approaches that enable leveraging SDoH along with real-world data to support public health and clinical health applications including helping design public health intervention, enhancing risk stratification, and enabling the prediction of unmet social needs.
RESULTS
Besides summarizing data sources, we identified gaps in capturing SDoH data in existing EHR systems and opportunities to leverage informatics approaches to collect SDoH information either from structured and unstructured EHR data or through linking with public surveys and environmental data. We also surveyed recently developed ontologies for standardizing SDoH information and approaches that incorporate SDoH for disease risk stratification, public health crisis prediction, and development of tailored interventions.
CONCLUSIONS
To enable effective public health and clinical applications using real-world data with SDoH, it is necessary to develop both non-technical solutions involving incentives, policies, and training as well as technical solutions such as novel social risk management tools that are integrated into clinical workflow. Ultimately, SDoH-powered social risk management, disease risk prediction, and development of SDoH tailored interventions for disease prevention and management have the potential to improve population health, reduce disparities, and improve health equity.
Collapse