1
|
Struebing F, Boecker A, Vollbach F, Weigel J, Kneser U, Bigdeli AK, Gazyakan E. Robot-assisted microsurgery: a single-center experience of 100 cases. J Robot Surg 2024; 19:28. [PMID: 39688744 DOI: 10.1007/s11701-024-02175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024]
Abstract
The adoption of robot-assisted microsurgery (RAMS) is a cutting-edge advancement in the realm of microsurgery. The Symani Surgical System is CE approved and has recently gained FDA approval. It provides tremor elimination, motion scaling and improved ergonomics. This study reports on the first 100 consecutive cases of RAMS at a high-volume academic center, representing the largest series to date, and assesses its clinical application and efficacy. A prospective database captured all RAMS cases at a single institution between February 2023 and April 2024. Parameters recorded included patient demographics, surgical details, and outcomes. Surgeons completed a comprehensive 12 h training program to ensure adept use of the system. One-hundred patients with a mean age of 54 yrs were identified, predominantly male (66%). RAMS was performed in a wide range of procedures, notably free flaps (73%), nerve surgery (20%), and lymphovenous anastomoses (LVA) (6%). 159 anastomoses and coaptations were performed. Major complications occurred in 12 cases (12%). There were two complete free flap losses (2.7% of free flaps) and one partial free flap loss (1.4%). LVAs had significantly longer times per stitch than other types of anastomoses (p < 0.01). RAMS presents a viable alternative to traditional microsurgery with a commendable safety profile, marked by a 3% conversion rate to conventional techniques and complication rates that align with current literature. While challenges such as longer anastomosis times and higher costs exist, the results affirm the feasibility of RAMS in a high-volume microsurgical center.
Collapse
Affiliation(s)
- F Struebing
- Department of Hand, Plastic and Reconstructive Surgery, Department of Hand and Plastic Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig Guttmann-Straße 13, 67071, Ludwigshafen, Germany
| | - A Boecker
- Department of Hand, Plastic and Reconstructive Surgery, Department of Hand and Plastic Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig Guttmann-Straße 13, 67071, Ludwigshafen, Germany
| | - F Vollbach
- Department of Hand, Plastic and Reconstructive Surgery, Department of Hand and Plastic Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig Guttmann-Straße 13, 67071, Ludwigshafen, Germany
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig - Maximilians - University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - J Weigel
- Department of Hand, Plastic and Reconstructive Surgery, Department of Hand and Plastic Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig Guttmann-Straße 13, 67071, Ludwigshafen, Germany
| | - U Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Department of Hand and Plastic Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig Guttmann-Straße 13, 67071, Ludwigshafen, Germany
| | - A K Bigdeli
- Department of Hand, Plastic and Reconstructive Surgery, Department of Hand and Plastic Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig Guttmann-Straße 13, 67071, Ludwigshafen, Germany
| | - E Gazyakan
- Department of Hand, Plastic and Reconstructive Surgery, Department of Hand and Plastic Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, Ludwig Guttmann-Straße 13, 67071, Ludwigshafen, Germany.
| |
Collapse
|
2
|
Yin X, Feng L, Hua Q, Ye J, Cai L. Progress in the study of mechanisms and pathways related to the survival of random skin flaps. Updates Surg 2024; 76:1195-1202. [PMID: 38308185 DOI: 10.1007/s13304-023-01746-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/29/2023] [Indexed: 02/04/2024]
Abstract
The clinical application of random flaps in wound repair has been a topic of discussion. Random flaps are prone to necrosis due to the lack of well-defined vascular blood supply during transfer surgery. Their clinical utility is restricted, financial and psychological burdens is imposed on patients due to this limitation. The survival of random skin flaps depends on factors such as ischemia-reperfusion injury, oxidative stress, local inflammatory response, and neovascularization. This review aims to provide an overview of the evidence supporting the use of random flaps in clinical practice. In addition, this review explores the impact of different medications on signaling pathways within the flap's local microcirculation and investigates the interconnections between these pathways.
Collapse
Affiliation(s)
- Xinghao Yin
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Liang Feng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qianqian Hua
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiangtian Ye
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Leyi Cai
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, XueYuan West Road, Luheng District, Wenzhou, Zhejiang, 325000, People's Republic of China.
| |
Collapse
|
3
|
Zhang L, Yu G, Yu Q, Wang L, Wu L, Tao Z, Ding J, Lin D. Baicalin promotes random-pattern skin flap survival by inducing autophagy via AMPK-regulated TFEB nuclear transcription. Phytother Res 2023; 37:3926-3938. [PMID: 37291961 DOI: 10.1002/ptr.7849] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 06/10/2023]
Abstract
The random-pattern skin flap is a generally used technique to cover the soft tissue defect, while its application is often constrained by complications after the flap transplant. Necrosis of the flap remains a principal obstacle. The purpose of this study was to investigate the effect of Baicalin on skin flap survival and its mechanism. First of all, we discovered that administering Baicalin stimulated cell migration and boosted the formation of capillary tubes in human umbilical vein endothelial cells. Then, we detected that Baicalin reduced apoptosis-induced oxidative stress by using western blot and oxidative stress test kit. After that, we observed that Baicalin increased autophagy and utilized 3MA to block autophagy augmentation substantially reversing the effects of Baicalin therapy. Furthermore, we uncovered the underlying mechanisms of Baicalin-induced autophagy via AMPK-regulated TFEB nuclear transcription. Finally, our in vivo experiment findings showed that Baicalin reduces oxidative stress, inhibits apoptosis, promotes angiogenesis, and boosts the levels of autophagy. After autophagy was blocked, substantially reversing the effects of Baicalin therapy. Our study indicated that Baicalin-induced autophagy via AMPK regulated TFEB nuclear transcription and then promotes angiogenesis and against oxidative stress and apoptotic promotes skin flap survival. These findings highlight the therapeutic potential for the clinical application of Baicalin in the future.
Collapse
Affiliation(s)
- Lilian Zhang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang, China
| | - Gaoxiang Yu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang, China
| | - Qing Yu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Long Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang, China
| | - Long Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang, China
| | - Zhenyu Tao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang, China
| | - Jian Ding
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang, China
| | - Damu Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang, China
| |
Collapse
|