1
|
Huang X, Cai H, Zhao Y, Kang Y. The Gut Microbiome and Acute Leukemia: Implications for Early Diagnostic and New Therapies. Mol Nutr Food Res 2024; 68:e2300551. [PMID: 38059888 DOI: 10.1002/mnfr.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/04/2023] [Indexed: 12/08/2023]
Abstract
Acute leukemia (AL), one of the hematological malignancies, shows high heterogeneity. Tremendous progresses are achieved in treating AL with novel targeted drugs and allogeneic hematopoietic stem cell transplantation, there are numerous issues including pathogenesis, early diagnosis, and therapeutic efficacy of AL to be solved. In recent years, an increasing number of studies regarding microbiome have shed more lights on the role of gut microbiota in promoting AL progression. Mechanisms related to the role of gut microbiota in enhancing AL genesis are summarized in the present work, especially on critical pathways like leaky gut, bacterial dysbiosis, microorganism-related molecular patterns, and bacterial metabolites, resulting in AL development. Additionally, the potential of gut microbiota as the biomarker for early AL diagnosis is discussed. It also outlooks therapies targeting gut microbiota for preventing AL development.
Collapse
Affiliation(s)
- Xinwei Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Haibo Cai
- Department of Oncology, Yunfeng Hospital, Xuanwei City, Yunnan Province, 655400, China
| | - Yanqin Zhao
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| |
Collapse
|
2
|
Yang X, Cao Q, Ma B, Xia Y, Liu M, Tian J, Chen J, Su C, Duan X. Probiotic powder ameliorates colorectal cancer by regulating Bifidobacterium animalis, Clostridium cocleatum, and immune cell composition. PLoS One 2023; 18:e0277155. [PMID: 36913356 PMCID: PMC10010516 DOI: 10.1371/journal.pone.0277155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2023] Open
Abstract
Based on the relationship between the gut microbiota and colorectal cancer, we developed a new probiotic powder for treatment of colorectal cancer. Initially, we evaluated the effect of the probiotic powder on CRC using hematoxylin and eosin staining, and evaluated mouse survival rate and tumor size. We then investigated the effects of the probiotic powder on the gut microbiota, immune cells, and apoptotic proteins using 16S rDNA sequencing, flow cytometry, and western blot, respectively. The results showed that the probiotic powder improved the intestinal barrier integrity, survival rate, and reduced tumor size in CRC mice. This effect was associated with changes in the gut microbiota. Specifically, the probiotic powder increased the abundance of Bifidobacterium animalis and reduced the abundance of Clostridium cocleatum. In addition, the probiotic powder resulted in decreased numbers of CD4+ Foxp3+ Treg cells, increased numbers of IFN-γ+ CD8+ T cells and CD4+ IL-4+ Th2 cells, decreased expression of the TIGIT in CD4+ IL-4+ Th2 cells, and increased numbers of CD19+ GL-7+ B cells. Furthermore, the expression of the pro-apoptotic protein BAX was significantly increased in tumor tissues in response to the probiotic powder. In summary, the probiotic powder ameliorated CRC by regulating the gut microbiota, reducing Treg cell abundance, promoting the number of IFN-γ+ CD8+ T cells, increasing Th2 cell abundance, inhibiting the expression of TIGIT in Th2 cells, and increasing B cell abundance in the immune microenvironment of CRC, thereby increasing the expression of BAX in CRC.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qian Cao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Bin Ma
- Department of Oncology Surgery, The First People's Hospital of Yinchuan, Yinchuan, China
| | - Yuhan Xia
- Department of Nutrition, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Miao Liu
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Jinhua Tian
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | | | - Chunxia Su
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Xiangguo Duan
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Laboratory Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Kang Y, Li L, Kang X, Zhao Y, Cai Y. Gut microbiota and metabolites in myasthenia gravis: Early diagnostic biomarkers and therapeutic strategies. Clin Immunol 2022; 245:109173. [PMID: 36351517 DOI: 10.1016/j.clim.2022.109173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
Myasthenia gravis (MG) is an acquired neurological autoimmune disorder characterized by dysfunctional transmission at the neuromuscular junction. The complex interplay of genetic and environmental influences is important for the occurrence and development of the disease. Recently, some studies have demonstrated the relationship between gut microbiota dysbiosis and MG. Certain gut microbial strains have been shown to attenuate or promote MG. This review summarized the role of gut microbiota and metabolites in MG progression. Meanwhile, we discuss the important potential of gut microbiota and metabolites for the early diagnostic biomarker of MG. Regulating gut microbiota may be novel and effective treatment for MG. Thus, targeted gut microbiota therapies are discussed and prospected to prevent MG progression.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Liping Li
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xing Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanqin Zhao
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cai
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Kang Y, Cai Y, Yang Y. The Gut Microbiome and Hepatocellular Carcinoma: Implications for Early Diagnostic Biomarkers and Novel Therapies. Liver Cancer 2022; 11:113-125. [PMID: 35634424 PMCID: PMC9109080 DOI: 10.1159/000521358] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/04/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) ranks the third place among all causes inducing cancer-associated mortality, worldwide. HCC nearly exclusively occurs in cases suffering from chronic liver disease (CLD), which results from the vicious cycle of liver damage, inflammation, and regeneration possibly lasting for dozens of years. Recently, more and more investigation on microbiome-gut-liver axis enhances our understanding toward how gut microbiota promotes liver disease and even HCC development. In this review, we summarize the mechanisms underlying the effect of gut microbiota on promoting HCC occurrence, with the focus on key pathways such as bacterial dysbiosis, leaky gut, bacterial metabolites, and microorganism-related molecular patterns, which promote liver inflammation, genotoxicity, and fibrosis that finally lead to cancer occurrence. Furthermore, we discuss gut microbiota's important potential to be the early diagnostic biomarker for HCC. Gut microbiota may be the candidate targets to simultaneously prevent CLD and HCC occurrence among advanced liver disease cases. We outlook the gut microbiota-targeting treatments in detail to prevent CLD and HCC progression.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yue Cai
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
| | - Ying Yang
- Department of Endocrinology, Affiliated Hospital of Yunnan University, Kunming, China
| |
Collapse
|
5
|
Kang Y, Kang X, Cai Y. The gut microbiome as a target for adjuvant therapy in insomnia disorder. Clin Res Hepatol Gastroenterol 2022; 46:101834. [PMID: 34800683 DOI: 10.1016/j.clinre.2021.101834] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023]
Abstract
Insomnia is a type of sleep disorder which has negative impacts on the quality of life, mood, cognitive function and health of humans. The etiology of insomnia may be related to many factors such as genetics, biochemistry, neuroendocrine, immune, and psychosocial factors. However, the detailed pathological aspects of insomnia remain unclear. Recent investigation of the microbiome-gut-brain axis enhances our understanding of the role of the gut microbiota in brain-related diseases. Gut microbiome has been shown to be associated with insomnia. However, the available data in this field remain limited and the relevant scientific work has only recently begun. This review aims to summarize the recent literature as an aid to better understanding how the alteration of gut microbiota composition contributes to insomnia while evaluating and prospecting the therapeutic effect of modulating gut microbiota in the treatment of insomnia based on previous publications.
Collapse
Affiliation(s)
- Yongbo Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Xing Kang
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Cai
- Department of microbiology and immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
6
|
Gestational Diabetes, Colorectal Cancer, Bariatric Surgery, and Weight Loss among Diabetes Mellitus Patients: A Mini Review of the Interplay of Multispecies Probiotics. Nutrients 2021; 14:nu14010192. [PMID: 35011065 PMCID: PMC8747162 DOI: 10.3390/nu14010192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/15/2023] Open
Abstract
Diabetes mellitus has been steadily increasing over the past decades and is one of the most significant global public health concerns. Diabetes mellitus patients have an increased risk of both surgical and post-surgical complications. The post-surgical risks are associated with the primary condition that led to surgery and the hyperglycaemia per se. Gut microbiota seems to contribute to glucose homeostasis and insulin resistance. It affects the metabolism through body weight and energy homeostasis, integrating the peripheral and central food intake regulatory signals. Homeostasis of gut microbiota seems to be enhanced by probiotics pre and postoperatively. The term probiotics is used to describe some species of live microorganisms that, when administered in adequate amounts, confer health benefits on the host. The role of probiotics in intestinal or microbial skin balance after abdominal or soft tissue elective surgeries on DM patients seems beneficial, as it promotes anti-inflammatory cytokine production while increasing the wound-healing process. This review article aims to present the interrelation of probiotic supplements with DM patients undergoing elective surgeries.
Collapse
|
7
|
The Effects of Berberine on the Gut Microbiota in Apc min/+ Mice Fed with a High Fat Diet. Molecules 2018; 23:molecules23092298. [PMID: 30205580 PMCID: PMC6225274 DOI: 10.3390/molecules23092298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/19/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Berberine (BBR) has been extensively reported to inhibit colorectal cancer (CRC) development, though its bioavailability is poor. Nowadays, an increasing number of studies have shown that BBR significantly accumulates in the intestines and could regulate gut microbiota in obesity. The purpose of this study was to further explore the effects of BBR on gut microbiota in Apc min/+ mice receiving a high fat diet (HFD). Methods: Apc min/+ mice received either HFD alone or HFD and BBR for 12 weeks. The intestinal tissues were collected to evaluate the efficiency of BBR on neoplasm development by hematoxylin and eosin staining. Meanwhile, immunohistochemistry was conducted to investigate the effects of BBR on cyclin D1 and β-catenin in colon tissues. Fecal samples were subjected to 16S rRNA sequencing. Results: BBR significantly reduced intestinal tumor development and altered the structure of gut microbiota in Apc min/+ mice fed with an HFD. At the phylum level, it was able to significantly inhibit the increase in Verrucomicrobia. At the genus level, it was able to suppress Akkermansia and elevate some short chain fat acid (SCFA)-producing bacteria. Conclusions: BBR significantly alleviated the development of CRC in Apc min/+ mice fed with HFD and restored the enteric microbiome community.
Collapse
|