1
|
El Zoghbi M, Malhotra A, Bilal M, Shaukat A. Impact of Artificial Intelligence on Clinical Research. Gastrointest Endosc Clin N Am 2025; 35:445-455. [PMID: 40021240 DOI: 10.1016/j.giec.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Artificial intelligence (AI) has potential to significantly impact clinical research when it comes to research preparation and data interpretation. Development of AI tools that can help in performing literature searches, synthesizing and streamlining data collection and analysis, and formatting of study could make the clinical research process more efficient. Several of these tools have been developed and trialed and many more are being rapidly developed. This article highlights the AI applications in clinical research in gastroenterology including its impact on drug discovery and explores areas where further guidance is needed to supplement the current understanding and enhance its use.
Collapse
Affiliation(s)
- Maysaa El Zoghbi
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Ashish Malhotra
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Mohammad Bilal
- University of Minnesota, Minneapolis VA Medical Center, Minneapolis, MN, USA
| | - Aasma Shaukat
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Zou PY, Zhu JR, Zhao Z, Mei H, Zhao JT, Sun WJ, Wang GH, Chen DF, Fan LL, Lan CH. Development and application of an artificial intelligence-assisted endoscopy system for diagnosis of Helicobacter pylori infection: a multicenter randomized controlled study. BMC Gastroenterol 2024; 24:335. [PMID: 39350033 PMCID: PMC11440712 DOI: 10.1186/s12876-024-03389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The early diagnosis and treatment of Heliobacter pylori (H.pylori) gastrointestinal infection provide significant benefits to patients. We constructed a convolutional neural network (CNN) model based on an endoscopic system to diagnose H. pylori infection, and then examined the potential benefit of this model to endoscopists in their diagnosis of H. pylori infection. MATERIALS AND METHODS A CNN neural network system for endoscopic diagnosis of H.pylori infection was established by collecting 7377 endoscopic images from 639 patients. The accuracy, sensitivity, and specificity were determined. Then, a randomized controlled study was used to compare the accuracy of diagnosis of H. pylori infection by endoscopists who were assisted or unassisted by this CNN model. RESULTS The deep CNN model for diagnosis of H. pylori infection had an accuracy of 89.6%, a sensitivity of 90.9%, and a specificity of 88.9%. Relative to the group of endoscopists unassisted by AI, the AI-assisted group had better accuracy (92.8% [194/209; 95%CI: 89.3%, 96.4%] vs. 75.6% [158/209; 95%CI: 69.7%, 81.5%]), sensitivity (91.8% [67/73; 95%CI: 85.3%, 98.2%] vs. 78.6% [44/56; 95%CI: 67.5%, 89.7%]), and specificity (93.4% [127/136; 95%CI: 89.2%, 97.6%] vs. 74.5% [114/153; 95%CI: 67.5%, 81.5%]). All of these differences were statistically significant (P < 0.05). CONCLUSION Our AI-assisted system for diagnosis of H. pylori infection has significant ability for diagnostic, and can improve the accuracy of endoscopists in gastroscopic diagnosis. TRIAL REGISTRATION This study was approved by the Ethics Committee of Daping Hospital (10/07/2020) (No.89,2020) and was registered with the Chinese Clinical Trial Registration Center (02/09/2020) ( www.chictr.org.cn ; registration number: ChiCTR2000037801).
Collapse
Affiliation(s)
- Pei-Ying Zou
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive, Malignancies, Daping Hospital, Army Medical University, Third Military Medical University), 10 Changjiang Branch Road, Chongqing, 400000, China
| | - Jian-Ru Zhu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive, Malignancies, Daping Hospital, Army Medical University, Third Military Medical University), 10 Changjiang Branch Road, Chongqing, 400000, China
| | - Zhe Zhao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive, Malignancies, Daping Hospital, Army Medical University, Third Military Medical University), 10 Changjiang Branch Road, Chongqing, 400000, China
| | - Hao Mei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive, Malignancies, Daping Hospital, Army Medical University, Third Military Medical University), 10 Changjiang Branch Road, Chongqing, 400000, China
| | - Jing-Tao Zhao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive, Malignancies, Daping Hospital, Army Medical University, Third Military Medical University), 10 Changjiang Branch Road, Chongqing, 400000, China
| | - Wen-Jing Sun
- Chongqing 13, People's Hospital, Chongqing, China
| | | | - Dong-Feng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive, Malignancies, Daping Hospital, Army Medical University, Third Military Medical University), 10 Changjiang Branch Road, Chongqing, 400000, China
| | - Li-Lin Fan
- Chongqing Jiulongpo District Second People's Hospital, Chongqing, China
| | - Chun-Hui Lan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive, Malignancies, Daping Hospital, Army Medical University, Third Military Medical University), 10 Changjiang Branch Road, Chongqing, 400000, China.
| |
Collapse
|
3
|
Qasem SN. Introducing HeliEns: A Novel Hybrid Ensemble Learning Algorithm for Early Diagnosis of Helicobacter pylori Infection. COMPUTERS 2024; 13:217. [DOI: 10.3390/computers13090217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The Gram-negative bacterium Helicobacter pylori (H. infection) infects the human stomach and is a major cause of gastritis, peptic ulcers, and gastric cancer. With over 50% of the global population affected, early and accurate diagnosis of H. infection infection is crucial for effective treatment and prevention of severe complications. Traditional diagnostic methods, such as endoscopy with biopsy, serology, urea breath tests, and stool antigen tests, are often invasive, costly, and can lack precision. Recent advancements in machine learning (ML) and quantum machine learning (QML) offer promising non-invasive alternatives capable of analyzing complex datasets to identify patterns not easily discernible by human analysis. This research aims to develop and evaluate HeliEns, a novel quantum hybrid ensemble learning algorithm designed for the early and accurate diagnosis of H. infection infection. HeliEns combines the strengths of multiple quantum machine learning models, specifically Quantum K-Nearest Neighbors (QKNN), Quantum Naive Bayes (QNB), and Quantum Logistic Regression (QLR), to enhance diagnostic accuracy and reliability. The development of HeliEns involved rigorous data preprocessing steps, including data cleaning, encoding of categorical variables, and feature scaling, to ensure the dataset’s suitability for quantum machine learning algorithms. Individual models (QKNN, QNB, and QLR) were trained and evaluated using metrics such as accuracy, precision, recall, and F1-score. The ensemble model was then constructed by integrating these quantum models using a hybrid approach that leverages their diverse strengths. The HeliEns model demonstrated superior performance compared to individual models, achieving an accuracy of 94%, precision of 97%, recall of 92%, and an F1-score of 94% in detecting H. infection infection. The quantum ensemble approach effectively mitigated the limitations of individual models, providing a robust and reliable diagnostic tool. HeliEns significantly improved diagnostic accuracy and reliability for early H. infection detection. The integration of multiple quantum ML algorithms within the HeliEns framework enhanced overall model performance. The non-invasive nature of the HeliEns model offers a cost-effective and user-friendly alternative to traditional diagnostic methods. This research underscores the transformative potential of quantum machine learning in healthcare, particularly in enhancing diagnostic efficiency and patient outcomes. HeliEns represents a significant advancement in the early diagnosis of H. infection infection, leveraging quantum machine learning to provide a non-invasive, accurate, and reliable diagnostic tool. This research highlights the importance of QML-driven solutions in healthcare and sets the stage for future research to further refine and validate the HeliEns model in real-world clinical settings.
Collapse
Affiliation(s)
- Sultan Noman Qasem
- Computer Science Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
- Computer Science Department, Faculty of Applied Science, Taiz University, Taiz 6803, Yemen
| |
Collapse
|
4
|
Hao W, Huang L, Li X, Jia H. Novel endoscopic techniques for the diagnosis of gastric Helicobacter pylori infection: a systematic review and network meta-analysis. Front Microbiol 2024; 15:1377541. [PMID: 39286347 PMCID: PMC11404567 DOI: 10.3389/fmicb.2024.1377541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024] Open
Abstract
Objective This study aimed to conduct a network meta-analysis to compare the diagnostic efficacy of diverse novel endoscopic techniques for detecting gastric Helicobacter pylori infection. Methods From inception to August 2023, literature was systematically searched across Pubmed, Embase, and Web of Science databases. Cochrane's risk of bias tool assessed the methodological quality of the included studies. Data analysis was conducted using the R software, employing a ranking chart to determine the most effective diagnostic method comprehensively. Convergence analysis was performed to assess the stability of the results. Results The study encompassed 36 articles comprising 54 observational studies, investigating 14 novel endoscopic techniques and involving 7,230 patients diagnosed with gastric H. pylori infection. Compared with the gold standard, the comprehensive network meta-analysis revealed the superior diagnostic performance of two new endoscopic techniques, Magnifying blue laser imaging endoscopy (M-BLI) and high-definition magnifying endoscopy with i-scan (M-I-SCAN). Specifically, M-BLI demonstrated the highest ranking in both sensitivity (SE) and positive predictive value (PPV), ranking second in negative predictive value (NPV) and fourth in specificity (SP). M-I-SCAN secured the top position in NPV, third in SE and SP, and fifth in PPV. Conclusion After thoroughly analyzing the ranking chart, we conclude that M-BLI and M-I-SCAN stand out as the most suitable new endoscopic techniques for diagnosing gastric H. pylori infection. Systematic review registration https://inplasy.com/inplasy-2023-11-0051/, identifier INPLASY2023110051.
Collapse
Affiliation(s)
- Wenzhe Hao
- The Graduated School, Anhui University of Chinese Medicine, Hefei, China
| | - Lin Huang
- The Graduated School, Anhui University of Chinese Medicine, Hefei, China
| | - Xuejun Li
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hongyu Jia
- School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Javed N, Ghazanfar H, Balar B, Patel H. Role of Artificial Intelligence in Endoscopic Intervention: A Clinical Review. J Community Hosp Intern Med Perspect 2024; 14:37-43. [PMID: 39036586 PMCID: PMC11259475 DOI: 10.55729/2000-9666.1341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 07/23/2024] Open
Abstract
Gastrointestinal diseases are increasing in global prevalence. As a result, the contribution to both mortality and healthcare costs is increasing. While interventions utilizing scoping techniques or ultrasound are crucial to both the timely diagnosis and management of illness, a few limitations are associated with these techniques. Artificial intelligence, using computerized diagnoses, deep learning systems, or neural networks, is increasingly being employed in multiple aspects of medicine to improve the characteristics and outcomes of these tools. Therefore, this review aims to discuss applications of artificial intelligence in endoscopy, colonoscopy, and endoscopic ultrasound.
Collapse
Affiliation(s)
- Nismat Javed
- Department of Internal Medicine, BronxCare Health System, Bronx, NY,
USA
| | - Haider Ghazanfar
- Department of Gastroenterology, BronxCare Health System, Bronx, NY,
USA
| | - Bhavna Balar
- Department of Gastroenterology, BronxCare Health System, Bronx, NY,
USA
| | - Harish Patel
- Department of Gastroenterology, BronxCare Health System, Bronx, NY,
USA
| |
Collapse
|
6
|
Zhao SQ, Liu WT. Progress in artificial intelligence assisted digestive endoscopy diagnosis of digestive system diseases. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:171-181. [DOI: 10.11569/wcjd.v32.i3.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2024]
|
7
|
Liu R, Li X, Liu Y, Du L, Zhu Y, Wu L, Hu B. A high-speed microscopy system based on deep learning to detect yeast-like fungi cells in blood. Bioanalysis 2024; 16:289-303. [PMID: 38334080 DOI: 10.4155/bio-2023-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Background: Blood-invasive fungal infections can cause the death of patients, while diagnosis of fungal infections is challenging. Methods: A high-speed microscopy detection system was constructed that included a microfluidic system, a microscope connected to a high-speed camera and a deep learning analysis section. Results: For training data, the sensitivity and specificity of the convolutional neural network model were 93.5% (92.7-94.2%) and 99.5% (99.1-99.5%), respectively. For validating data, the sensitivity and specificity were 81.3% (80.0-82.5%) and 99.4% (99.2-99.6%), respectively. Cryptococcal cells were found in 22.07% of blood samples. Conclusion: This high-speed microscopy system can analyze fungal pathogens in blood samples rapidly with high sensitivity and specificity and can help dramatically accelerate the diagnosis of fungal infectious diseases.
Collapse
Affiliation(s)
- Ruiqi Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, P.R. China
| | - Xiaojie Li
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| | - Yingyi Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, P.R. China
| | - Lijun Du
- Department of Clinical Laboratory, Huadu District People's Hospital of Guangzhou, Guangdong, China
| | - Yingzhu Zhu
- Guangzhou Waterrock Gene Technology, Guangdong, China
| | - Lichuan Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, Guangxi, P.R. China
| | - Bo Hu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
8
|
Elshaarawy O, Alboraie M, El-Kassas M. Artificial Intelligence in endoscopy: A future poll. Arab J Gastroenterol 2024; 25:13-17. [PMID: 38220477 DOI: 10.1016/j.ajg.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 09/18/2022] [Accepted: 11/28/2023] [Indexed: 01/16/2024]
Abstract
Artificial Intelligence [AI] has been a trendy topic in recent years, with many developed medical applications. In gastrointestinal endoscopy, AI systems include computer-assisted detection [CADe] for lesion detection as bleedings and polyps and computer-assisted diagnosis [CADx] for optical biopsy and lesion characterization. The technology behind these systems is based on a computer algorithm that is trained for a specific function. This function could be to recognize or characterize target lesions such as colonic polyps. Moreover, AI systems can offer technical assistance to improve endoscopic performance as scope insertion guidance. Currently, we believe that such technologies still lack legal and regulatory validations as a large sector of doctors and patients have concerns. However, there is no doubt that these technologies will bring significant improvement in the endoscopic management of patients as well as save money and time.
Collapse
Affiliation(s)
- Omar Elshaarawy
- Hepatology and Gastroenterology Department, National Liver Institute, Menoufia University, Menoufia, Egypt; Gastroenterology Department, Royal Liverpool University Hospital, NHS, UK
| | - Mohamed Alboraie
- Department of Internal Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt.
| |
Collapse
|
9
|
Ahn JC, Shah VH. Artificial intelligence in gastroenterology and hepatology. ARTIFICIAL INTELLIGENCE IN CLINICAL PRACTICE 2024:443-464. [DOI: 10.1016/b978-0-443-15688-5.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Orășeanu A, Brisc MC, Maghiar OA, Popa H, Brisc CM, Șolea SF, Maghiar TA, Brisc C. Landscape of Innovative Methods for Early Diagnosis of Gastric Cancer: A Systematic Review. Diagnostics (Basel) 2023; 13:3608. [PMID: 38132192 PMCID: PMC10742893 DOI: 10.3390/diagnostics13243608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
From a global perspective, gastric cancer (GC) persists as a significant healthcare issue. In the Western world, the majority of cases are discovered at late stages, when the treatment is generally unsuccessful. There are no organized screening programs outside of Asia (Japan and Republic of Korea). Traditional diagnosis techniques (such as upper endoscopy), conventional tumor markers (CEA, CA19-9, and CA72-4), radiographic imaging, and CT scanning all have drawbacks. The gold standard for the earliest detection of cancer and related premalignant lesions is still endoscopy with a proper biopsy follow-up. Since there are currently no clinically approved biomarkers for the early diagnosis of GC, the identification of non-invasive biomarkers is expected to help improve the prognosis and survival rate of these patients. The search for new screening biomarkers is currently underway. These include genetic biomarkers, such as circulating tumor cells, microRNAs, and exosomes, as well as metabolic biomarkers obtained from biofluids. Meanwhile, cutting-edge high-resolution endoscopic technologies are demonstrating promising outcomes in the visual diagnosis of mucosal lesions with the aid of linked color imaging and machine learning models. Following the PRISMA guidelines, this study examined the articles in databases such as PubMed, resulting in 167 included articles. This review discusses the currently available and emerging methods for diagnosing GC early on, as well as new developments in the endoscopic detection of early lesions of the stomach.
Collapse
Affiliation(s)
- Alexandra Orășeanu
- Clinic of Gastroenterology, Bihor Clinical County Emergency Hospital, 410169 Oradea, Romania; (A.O.); (S.F.Ș.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (O.A.M.); (T.A.M.); (C.B.)
| | | | - Octavian Adrian Maghiar
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (O.A.M.); (T.A.M.); (C.B.)
- Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania;
| | - Horia Popa
- Clinical Emergency Hospital “Prof. Dr. Agrippa Ionescu”, 011356 Bucharest, Romania;
| | - Ciprian Mihai Brisc
- Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania;
| | - Sabina Florina Șolea
- Clinic of Gastroenterology, Bihor Clinical County Emergency Hospital, 410169 Oradea, Romania; (A.O.); (S.F.Ș.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (O.A.M.); (T.A.M.); (C.B.)
| | - Teodor Andrei Maghiar
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (O.A.M.); (T.A.M.); (C.B.)
- Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania;
| | - Ciprian Brisc
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (O.A.M.); (T.A.M.); (C.B.)
- Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania;
| |
Collapse
|
11
|
Kang D, Lee K, Kim J. Diagnostic usefulness of deep learning methods for Helicobacter pylori infection using esophagogastroduodenoscopy images. JGH Open 2023; 7:875-883. [PMID: 38162866 PMCID: PMC10757494 DOI: 10.1002/jgh3.12995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/02/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024]
Abstract
Background and Aims We aimed to assess the diagnostic potential of deep convolutional neural networks (DCNNs) for detecting Helicobacter pylori infection in patients who underwent esophagogastroduodenoscopy and Campylobacter-like organism tests. Methods We categorized a total of 13,071 images of various gastric sub-areas and employed five pretrained DCNN architectures: ResNet-101, Xception, Inception-v3, InceptionResnet-v2, and DenseNet-201. Additionally, we created an ensemble model by combining the output probabilities of the best models. We used images of different sub-areas of the stomach for training and evaluated the performance of our models. The diagnostic metrics assessed included area under the curve (AUC), specificity, accuracy, positive predictive value, and negative predictive value. Results When training included images from all sub-areas of the stomach, our ensemble model demonstrated the highest AUC (0.867), with specificity at 78.44%, accuracy at 80.28%, positive predictive value at 82.66%, and negative predictive value at 77.37%. Significant differences were observed in AUC between the ensemble model and the individual DCNN models. When training utilized images from each sub-area separately, the AUC values for the antrum, cardia and fundus, lower body greater curvature and lesser curvature, and upper body greater curvature and lesser curvature regions were 0.842, 0.826, 0.718, and 0.858, respectively, when the ensemble model was used. Conclusions Our study demonstrates that the DCNN model, designed for automated image analysis, holds promise for the evaluation and diagnosis of Helicobacter pylori infection.
Collapse
Affiliation(s)
- Daesung Kang
- Department of Healthcare Information TechnologyInje UniversityGimhaeRepublic of Korea
| | - Kayoung Lee
- Department of Family medicine, Busan Paik HospitalInje University College of MedicineBusanRepublic of Korea
| | - Jinseung Kim
- Department of Family medicine, Busan Paik HospitalInje University College of MedicineBusanRepublic of Korea
| |
Collapse
|
12
|
Zhang JQ, Mi JJ, Wang R. Application of convolutional neural network-based endoscopic imaging in esophageal cancer or high-grade dysplasia: A systematic review and meta-analysis. World J Gastrointest Oncol 2023; 15:1998-2016. [DOI: 10.4251/wjgo.v15.i11.1998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Esophageal cancer is the seventh-most common cancer type worldwide, accounting for 5% of death from malignancy. Development of novel diagnostic techniques has facilitated screening, early detection, and improved prognosis. Convolutional neural network (CNN)-based image analysis promises great potential for diagnosing and determining the prognosis of esophageal cancer, enabling even early detection of dysplasia.
AIM To conduct a meta-analysis of the diagnostic accuracy of CNN models for the diagnosis of esophageal cancer and high-grade dysplasia (HGD).
METHODS PubMed, EMBASE, Web of Science and Cochrane Library databases were searched for articles published up to November 30, 2022. We evaluated the diagnostic accuracy of using the CNN model with still image-based analysis and with video-based analysis for esophageal cancer or HGD, as well as for the invasion depth of esophageal cancer. The pooled sensitivity, pooled specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve (AUC) were estimated, together with the 95% confidence intervals (CI). A bivariate method and hierarchical summary receiver operating characteristic method were used to calculate the diagnostic test accuracy of the CNN model. Meta-regression and subgroup analyses were used to identify sources of heterogeneity.
RESULTS A total of 28 studies were included in this systematic review and meta-analysis. Using still image-based analysis for the diagnosis of esophageal cancer or HGD provided a pooled sensitivity of 0.95 (95%CI: 0.92-0.97), pooled specificity of 0.92 (0.89-0.94), PLR of 11.5 (8.3-16.0), NLR of 0.06 (0.04-0.09), DOR of 205 (115-365), and AUC of 0.98 (0.96-0.99). When video-based analysis was used, a pooled sensitivity of 0.85 (0.77-0.91), pooled specificity of 0.73 (0.59-0.83), PLR of 3.1 (1.9-5.0), NLR of 0.20 (0.12-0.34), DOR of 15 (6-38) and AUC of 0.87 (0.84-0.90) were found. Prediction of invasion depth resulted in a pooled sensitivity of 0.90 (0.87-0.92), pooled specificity of 0.83 (95%CI: 0.76-0.88), PLR of 7.8 (1.9-32.0), NLR of 0.10 (0.41-0.25), DOR of 118 (11-1305), and AUC of 0.95 (0.92-0.96).
CONCLUSION CNN-based image analysis in diagnosing esophageal cancer and HGD is an excellent diagnostic method with high sensitivity and specificity that merits further investigation in large, multicenter clinical trials.
Collapse
Affiliation(s)
- Jun-Qi Zhang
- The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jun-Jie Mi
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan 030012, Shanxi Province, China
| | - Rong Wang
- Department of Gastroenterology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan 030012, Shanxi Province, China
| |
Collapse
|
13
|
Shen Y, Chen A, Zhang X, Zhong X, Ma A, Wang J, Wang X, Zheng W, Sun Y, Yue L, Zhang Z, Zhang X, Lin N, Kim JJ, Du Q, Liu J, Hu W. Real-Time Evaluation of Helicobacter pylori Infection by Convolution Neural Network During White-Light Endoscopy: A Prospective, Multicenter Study (With Video). Clin Transl Gastroenterol 2023; 14:e00643. [PMID: 37800683 PMCID: PMC10589579 DOI: 10.14309/ctg.0000000000000643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Convolutional neural network during endoscopy may facilitate evaluation of Helicobacter pylori infection without obtaining gastric biopsies. The aim of the study was to evaluate the diagnosis accuracy of a computer-aided decision support system for H. pylori infection (CADSS-HP) based on convolutional neural network under white-light endoscopy. METHODS Archived video recordings of upper endoscopy with white-light examinations performed at Sir Run Run Shaw Hospital (January 2019-September 2020) were used to develop CADSS-HP. Patients receiving endoscopy were prospectively enrolled (August 2021-August 2022) from 3 centers to calculate the diagnostic property. Accuracy of CADSS-HP for H. pylori infection was also compared with endoscopic impression, urea breath test (URT), and histopathology. H. pylori infection was defined by positive test on histopathology and/or URT. RESULTS Video recordings of 599 patients who received endoscopy were used to develop CADSS-HP. Subsequently, 456 patients participated in the prospective evaluation including 189 (41.4%) with H. pylori infection. With a threshold of 0.5, CADSS-HP achieved an area under the curve of 0.95 (95% confidence interval [CI], 0.93-0.97) with sensitivity and specificity of 91.5% (95% CI 86.4%-94.9%) and 88.8% (95% CI 84.2%-92.2%), respectively. CADSS-HP demonstrated higher sensitivity (91.5% vs 78.3%; mean difference = 13.2%, 95% CI 5.7%-20.7%) and accuracy (89.9% vs 83.8%, mean difference = 6.1%, 95% CI 1.6%-10.7%) compared with endoscopic diagnosis by endoscopists. Sensitivity of CADSS-HP in diagnosing H. pylori was comparable with URT (91.5% vs 95.2%; mean difference = 3.7%, 95% CI -1.8% to 9.4%), better than histopathology (91.5% vs 82.0%; mean difference = 9.5%, 95% CI 2.3%-16.8%). DISCUSSION CADSS-HP achieved high sensitivity in the diagnosis of H. pylori infection in the real-time test, outperforming endoscopic diagnosis by endoscopists and comparable with URT. Clinicaltrials.gov ; ChiCTR2000030724.
Collapse
Affiliation(s)
- Yuqin Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
- West China Xiamen Hospital, Sichuan University, Xiamen, China
| | - Angli Chen
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, China
| | - Xinsen Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xingwei Zhong
- Department of Gastroenterology, Deqing County People's Hospital, Huzhou, China
| | - Ahuo Ma
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, China
| | - Jianping Wang
- Department of Gastroenterology, Deqing County People's Hospital, Huzhou, China
| | - Xinjie Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Wenfang Zheng
- Department of Gastroenterology, Hangzhou First People's Hospital, Hangzhou, China
| | - Yingchao Sun
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Lei Yue
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Zhe Zhang
- Department of Gastroenterology, Longyou County People's Hospital, Quzhou, China
| | - Xiaoyan Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Ne Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - John J. Kim
- Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California, USA
| | - Qin Du
- Department of Gastroenterology, The Second Affiliated Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Jiquan Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Weiling Hu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Popovic D, Glisic T, Milosavljevic T, Panic N, Marjanovic-Haljilji M, Mijac D, Stojkovic Lalosevic M, Nestorov J, Dragasevic S, Savic P, Filipovic B. The Importance of Artificial Intelligence in Upper Gastrointestinal Endoscopy. Diagnostics (Basel) 2023; 13:2862. [PMID: 37761229 PMCID: PMC10528171 DOI: 10.3390/diagnostics13182862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Recently, there has been a growing interest in the application of artificial intelligence (AI) in medicine, especially in specialties where visualization methods are applied. AI is defined as a computer's ability to achieve human cognitive performance, which is accomplished through enabling computer "learning". This can be conducted in two ways, as machine learning and deep learning. Deep learning is a complex learning system involving the application of artificial neural networks, whose algorithms imitate the human form of learning. Upper gastrointestinal endoscopy allows examination of the esophagus, stomach and duodenum. In addition to the quality of endoscopic equipment and patient preparation, the performance of upper endoscopy depends on the experience and knowledge of the endoscopist. The application of artificial intelligence in endoscopy refers to computer-aided detection and the more complex computer-aided diagnosis. The application of AI in upper endoscopy is aimed at improving the detection of premalignant and malignant lesions, with special attention on the early detection of dysplasia in Barrett's esophagus, the early detection of esophageal and stomach cancer and the detection of H. pylori infection. Artificial intelligence reduces the workload of endoscopists, is not influenced by human factors and increases the diagnostic accuracy and quality of endoscopic methods.
Collapse
Affiliation(s)
- Dusan Popovic
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Department of Gastroenterology, Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, 11000 Belgrade, Serbia; (N.P.); (M.M.-H.)
| | - Tijana Glisic
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Clinic for Gastroenterohepatology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | | | - Natasa Panic
- Department of Gastroenterology, Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, 11000 Belgrade, Serbia; (N.P.); (M.M.-H.)
| | - Marija Marjanovic-Haljilji
- Department of Gastroenterology, Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, 11000 Belgrade, Serbia; (N.P.); (M.M.-H.)
| | - Dragana Mijac
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Clinic for Gastroenterohepatology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Milica Stojkovic Lalosevic
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Clinic for Gastroenterohepatology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Jelena Nestorov
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Clinic for Gastroenterohepatology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Sanja Dragasevic
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Clinic for Gastroenterohepatology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Predrag Savic
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Clinic for Surgery, Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, 11000 Belgrade, Serbia
| | - Branka Filipovic
- Faculty of Medicine Belgrade, University of Belgrade, 11000 Belgrade, Serbia; (T.G.); (D.M.); (M.S.L.); (J.N.); (S.D.); (P.S.); (B.F.)
- Department of Gastroenterology, Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, 11000 Belgrade, Serbia; (N.P.); (M.M.-H.)
| |
Collapse
|
15
|
Lin CH, Hsu PI, Tseng CD, Chao PJ, Wu IT, Ghose S, Shih CA, Lee SH, Ren JH, Shie CB, Lee TF. Application of artificial intelligence in endoscopic image analysis for the diagnosis of a gastric cancer pathogen-Helicobacter pylori infection. Sci Rep 2023; 13:13380. [PMID: 37592004 PMCID: PMC10435453 DOI: 10.1038/s41598-023-40179-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is the principal cause of chronic gastritis, gastric ulcers, duodenal ulcers, and gastric cancer. In clinical practice, diagnosis of H. pylori infection by a gastroenterologists' impression of endoscopic images is inaccurate and cannot be used for the management of gastrointestinal diseases. The aim of this study was to develop an artificial intelligence classification system for the diagnosis of H. pylori infection by pre-processing endoscopic images and machine learning methods. Endoscopic images of the gastric body and antrum from 302 patients receiving endoscopy with confirmation of H. pylori status by a rapid urease test at An Nan Hospital were obtained for the derivation and validation of an artificial intelligence classification system. The H. pylori status was interpreted as positive or negative by Convolutional Neural Network (CNN) and Concurrent Spatial and Channel Squeeze and Excitation (scSE) network, combined with different classification models for deep learning of gastric images. The comprehensive assessment for H. pylori status by scSE-CatBoost classification models for both body and antrum images from same patients achieved an accuracy of 0.90, sensitivity of 1.00, specificity of 0.81, positive predictive value of 0.82, negative predicted value of 1.00, and area under the curve of 0.88. The data suggest that an artificial intelligence classification model using scSE-CatBoost deep learning for gastric endoscopic images can distinguish H. pylori status with good performance and is useful for the survey or diagnosis of H. pylori infection in clinical practice.
Collapse
Affiliation(s)
- Chih-Hsueh Lin
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| | - Ping-I Hsu
- Division of Gastroenterology, Department of Medicine, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Chin-Dar Tseng
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.
| | - Pei-Ju Chao
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| | - I-Ting Wu
- Division of Gastroenterology, Department of Medicine, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Supratip Ghose
- Department of Education and Research, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Chih-An Shih
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Antai Medical Care Corporation, Antai Tian-Sheng Memorial Hospital, Donggan, Pingtung County, Taiwan
- Department of Nursing, Meiho University, Neipu, Pingtung County, Taiwan
| | - Shen-Hao Lee
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Linkou, Taiwan
| | - Jia-Hong Ren
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan
| | - Chang-Bih Shie
- Division of Gastroenterology, Department of Medicine, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Tsair-Fwu Lee
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.
- Medical Physics and Informatics Laboratory of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 80778, Taiwan.
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- PhD Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
16
|
Du RC, Ouyang YB, Hu Y. Research trends on artificial intelligence and endoscopy in digestive diseases: A bibliometric analysis from 1990 to 2022. World J Gastroenterol 2023; 29:3561-3573. [PMID: 37389238 PMCID: PMC10303508 DOI: 10.3748/wjg.v29.i22.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Recently, artificial intelligence (AI) has been widely used in gastrointestinal endoscopy examinations.
AIM To comprehensively evaluate the application of AI-assisted endoscopy in detecting different digestive diseases using bibliometric analysis.
METHODS Relevant publications from the Web of Science published from 1990 to 2022 were extracted using a combination of the search terms “AI” and “endoscopy”. The following information was recorded from the included publications: Title, author, institution, country, endoscopy type, disease type, performance of AI, publication, citation, journal and H-index.
RESULTS A total of 446 studies were included. The number of articles reached its peak in 2021, and the annual citation numbers increased after 2006. China, the United States and Japan were dominant countries in this field, accounting for 28.7%, 16.8%, and 15.7% of publications, respectively. The Tada Tomohiro Institute of Gastroenterology and Proctology was the most influential institution. “Cancer” and “polyps” were the hotspots in this field. Colorectal polyps were the most concerning and researched disease, followed by gastric cancer and gastrointestinal bleeding. Conventional endoscopy was the most common type of examination. The accuracy of AI in detecting Barrett’s esophagus, colorectal polyps and gastric cancer from 2018 to 2022 is 87.6%, 93.7% and 88.3%, respectively. The detection rates of adenoma and gastrointestinal bleeding from 2018 to 2022 are 31.3% and 96.2%, respectively.
CONCLUSION AI could improve the detection rate of digestive tract diseases and a convolutional neural network-based diagnosis program for endoscopic images shows promising results.
Collapse
Affiliation(s)
- Ren-Chun Du
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yao-Bin Ouyang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
17
|
Stanciu SG, König K, Song YM, Wolf L, Charitidis CA, Bianchini P, Goetz M. Toward next-generation endoscopes integrating biomimetic video systems, nonlinear optical microscopy, and deep learning. BIOPHYSICS REVIEWS 2023; 4:021307. [PMID: 38510341 PMCID: PMC10903409 DOI: 10.1063/5.0133027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/26/2023] [Indexed: 03/22/2024]
Abstract
According to the World Health Organization, the proportion of the world's population over 60 years will approximately double by 2050. This progressive increase in the elderly population will lead to a dramatic growth of age-related diseases, resulting in tremendous pressure on the sustainability of healthcare systems globally. In this context, finding more efficient ways to address cancers, a set of diseases whose incidence is correlated with age, is of utmost importance. Prevention of cancers to decrease morbidity relies on the identification of precursor lesions before the onset of the disease, or at least diagnosis at an early stage. In this article, after briefly discussing some of the most prominent endoscopic approaches for gastric cancer diagnostics, we review relevant progress in three emerging technologies that have significant potential to play pivotal roles in next-generation endoscopy systems: biomimetic vision (with special focus on compound eye cameras), non-linear optical microscopies, and Deep Learning. Such systems are urgently needed to enhance the three major steps required for the successful diagnostics of gastrointestinal cancers: detection, characterization, and confirmation of suspicious lesions. In the final part, we discuss challenges that lie en route to translating these technologies to next-generation endoscopes that could enhance gastrointestinal imaging, and depict a possible configuration of a system capable of (i) biomimetic endoscopic vision enabling easier detection of lesions, (ii) label-free in vivo tissue characterization, and (iii) intelligently automated gastrointestinal cancer diagnostic.
Collapse
Affiliation(s)
- Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, Bucharest, Romania
| | | | | | - Lior Wolf
- School of Computer Science, Tel Aviv University, Tel-Aviv, Israel
| | - Costas A. Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, Italian Institute of Technology, Genoa, Italy
| | - Martin Goetz
- Medizinische Klinik IV-Gastroenterologie/Onkologie, Kliniken Böblingen, Klinikverbund Südwest, Böblingen, Germany
| |
Collapse
|
18
|
Zha Y, Xue C, Liu Y, Ni J, De La Fuente JM, Cui D. Artificial intelligence in theranostics of gastric cancer, a review. MEDICAL REVIEW (2021) 2023; 3:214-229. [PMID: 37789960 PMCID: PMC10542883 DOI: 10.1515/mr-2022-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/26/2023] [Indexed: 10/05/2023]
Abstract
Gastric cancer (GC) is one of the commonest cancers with high morbidity and mortality in the world. How to realize precise diagnosis and therapy of GC owns great clinical requirement. In recent years, artificial intelligence (AI) has been actively explored to apply to early diagnosis and treatment and prognosis of gastric carcinoma. Herein, we review recent advance of AI in early screening, diagnosis, therapy and prognosis of stomach carcinoma. Especially AI combined with breath screening early GC system improved 97.4 % of early GC diagnosis ratio, AI model on stomach cancer diagnosis system of saliva biomarkers obtained an overall accuracy of 97.18 %, specificity of 97.44 %, and sensitivity of 96.88 %. We also discuss concept, issues, approaches and challenges of AI applied in stomach cancer. This review provides a comprehensive view and roadmap for readers working in this field, with the aim of pushing application of AI in theranostics of stomach cancer to increase the early discovery ratio and curative ratio of GC patients.
Collapse
Affiliation(s)
- Yiqian Zha
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | - Cuili Xue
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | - Jian Ni
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| | | | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center for Nanotechnology, Shanghai, China
| |
Collapse
|
19
|
Yamaguchi N, Sakaguchi T, Isomoto H, Inamine T, Tsukamoto R, Fukuda D, Ohnita K, Kanda T, Matsushima K, Hirayama T, Yashima K, Tsukamoto K. Polymorphism in autophagy-related genes LRP1 and CAPZA1 may promote gastric mucosal atrophy. Genes Environ 2023; 45:18. [PMID: 37198664 DOI: 10.1186/s41021-023-00274-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Helicobacter pylori secretes cytotoxin-associated gene A (CagA) into the gastric epithelium, causing gastric mucosal atrophy (GMA) and gastric cancer. In contrast, host cells degrade CagA via autophagy. However, the association between polymorphisms in autophagy-related genes and GMA must be fully elucidated. RESULTS We evaluated the association between single nucleotide polymorphisms (SNPs) in autophagy-related genes (low-density lipoprotein receptor-related protein 1, LRP1; capping actin protein of muscle Z-line alpha subunit 1, CAPAZ1; and lysosomal-associated membrane protein 1, LAMP1) and GMA in 200 H. pylori-positive individuals. The frequency of the T/T genotype at rs1800137 in LRP1 was significantly lower in the GMA group than in the non-GMA group (p = 0.018, odds ratio [OR] = 0.188). The frequencies of the G/A or A/A genotype at rs4423118 and T/A or A/A genotype at rs58618380 of CAPAZ1 in the GMA group were significantly higher than those in the non-GMA group (p = 0.029 and p = 0.027, respectively). Multivariate analysis revealed that C/C or C/T genotype at rs1800137, T/A or A/A genotype at rs58618380, and age were independent risk factors for GMA (p = 0.038, p = 0.023, and p = 0.006, respectively). Furthermore, individuals with the rs1800137 C/C or C/T genotype of LRP1 had a 5.3-fold higher susceptibility to GMA. These genetic tests may provide future directions for precision medicine for individuals more likely to develop GMA. CONCLUSION LRP1 and CAPZA1 polymorphisms may be associated with the development of GMA.
Collapse
Affiliation(s)
- Naoyuki Yamaguchi
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takuki Sakaguchi
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-Cho, Yonago, 683-8504, Japan.
| | - Hajime Isomoto
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-Cho, Yonago, 683-8504, Japan.
| | - Tatsuo Inamine
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ryoya Tsukamoto
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Daisuke Fukuda
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Department of Surgical Oncology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Fukuda Yutaka Clinic, 3-5 Hamaguchi-machi, Nagasaki, 852-8107, Japan
| | - Ken Ohnita
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Shunkaikai Inoue Hospital, 6-12 Takara-machi, Nagasaki, 850-0045, Japan
| | - Tsutomu Kanda
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-Cho, Yonago, 683-8504, Japan
| | - Kayoko Matsushima
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tatsuro Hirayama
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kazuo Yashima
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-Cho, Yonago, 683-8504, Japan
| | - Kazuhiro Tsukamoto
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
20
|
Li YD, Wang HG, Chen SS, Yu JP, Ruan RW, Jin CH, Chen M, Jin JY, Wang S. Assessment of Helicobacter pylori infection by deep learning based on endoscopic videos in real time. Dig Liver Dis 2023; 55:649-654. [PMID: 36872201 DOI: 10.1016/j.dld.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/09/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND AND AIMS Endoscopic assessment of Helicobacter pylori infection is a simple and effective method. Here, we aimed to develop a deep learning-based system named Intelligent Detection Endoscopic Assistant-Helicobacter pylori (IDEA-HP) to assess H. pylori infection by using endoscopic videos in real time. METHODS Endoscopic data were retrospectively obtained from Zhejiang Cancer Hospital (ZJCH) for the development, validation, and testing of the system. Stored videos from ZJCH were used for assessing and comparing the performance of IDEA-HP with that of endoscopists. Prospective consecutive patients undergoing esophagogastroduodenoscopy were enrolled to assess the applicability of clinical practice. The urea breath test was used as the gold standard for diagnosing H. pylori infection. RESULTS In 100 videos, IDEA-HP achieved a similar overall accuracy of assessing H. pylori infection to that of experts (84.0% vs. 83.6% [P = 0.729]). Nevertheless, the diagnostic accuracy (84.0% vs. 74.0% [P<0.001]) and sensitivity (82.0% vs. 67.2% [P<0.001]) of IDEA-HP were significantly higher than those of the beginners. In 191 prospective consecutive patients, IDEA-HP achieved accuracy, sensitivity, and specificity of 85.3% (95% CI: 79.0%-89.3%), 83.3% (95% CI: 72.8%-90.5%), and 85.8% (95% CI: 77.7%-91.4%), respectively. CONCLUSIONS Our results show that IDEA-HP has great potential for assisting endoscopists in assessing H. pylori infection status during actual clinical work.
Collapse
Affiliation(s)
- Yan-Dong Li
- Department of Endoscopy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Huo-Gen Wang
- Hithink RoyalFlush Information Network Co., Ltd, Hangzhou, China
| | - Sheng-Sen Chen
- Department of Endoscopy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jiang-Ping Yu
- Department of Endoscopy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Rong-Wei Ruan
- Department of Endoscopy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Chao-Hui Jin
- Hithink RoyalFlush Information Network Co., Ltd, Hangzhou, China
| | - Ming Chen
- Hithink RoyalFlush Information Network Co., Ltd, Hangzhou, China
| | - Jia-Yan Jin
- Hithink RoyalFlush Information Network Co., Ltd, Hangzhou, China
| | - Shi Wang
- Department of Endoscopy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
21
|
Pornvoraphat P, Tiankanon K, Pittayanon R, Sunthornwetchapong P, Vateekul P, Rerknimitr R. Real-time gastric intestinal metaplasia diagnosis tailored for bias and noisy-labeled data with multiple endoscopic imaging. Comput Biol Med 2023; 154:106582. [PMID: 36738708 DOI: 10.1016/j.compbiomed.2023.106582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
This work presents real-time segmentation viz. gastric intestinal metaplasia (GIM). Recently, GIM segmentation of endoscopic images has been carried out to differentiate GIM from a healthy stomach. However, real-time detection is difficult to achieve. Conditions are challenging, and include multiple color modes (white light endoscopy and narrow-band imaging), other abnormal lesions (erosion and ulcer), noisy labels etc. Herein, our model is based on BiSeNet and can overcome the many issues regarding GIM. Application of auxiliary head and additional loss are seen to improve performance as well as enhance multiple color modes accurately. Further, multiple pre-processing techniques are utilized for leveraging detection performance: namely, location-wise negative sampling, jigsaw augmentation, and label smoothing. Finally, the decision threshold can be adjusted separately for each color mode. Work undertaken at King Chulalongkorn Memorial Hospital examined 940 histologically proven GIM images and 1239 non-GIM images, obtained over 173 frames per second (FPS). In terms of accuracy, our model is seen to outperform all baselines. Our results demonstrate sensitivity, specificity, positive predictive, negative predictive, accuracy, and mean intersection over union (IoU), achieving GIM segmentation values of 91%, 96%, 91%, 91%, 96%, and 55%, respectively.
Collapse
Affiliation(s)
- Passin Pornvoraphat
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Kasenee Tiankanon
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Rapat Pittayanon
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Phanukorn Sunthornwetchapong
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Peerapon Vateekul
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand.
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
| |
Collapse
|
22
|
Halvorsen N, Mori Y. Artificial intelligence and upper gastrointestinal endoscopy: what is the optimal study design? Minerva Surg 2023; 78:81-85. [PMID: 36843555 DOI: 10.23736/s2724-5691.22.09810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Upper gastrointestinal cancers (i.e., esophageal and gastric cancers) are common cancers worldwide with high mortality and morbidity. Although there is no randomized controlled trial-based evidence, early detection with endoscopy is expected to positively affect prognosis and morbidity. However, endoscopic procedures are always accompanied by human-induced errors such as overlooking of neoplasia and cancers. Recently, the use of artificial intelligence (AI) during upper gastrointestinal endoscopy is catching attention because it is expected to reduce human-induced variability of the examination. This review article introduces the overview of the expectation and current status of the AI tools for upper gastrointestinal endoscopy and shares possible challenges and corresponding solutions with readers.
Collapse
Affiliation(s)
- Natalie Halvorsen
- Clinical Effectiveness Research Group, University Hospital of Oslo, University of Oslo, Oslo, Norway
| | - Yuichi Mori
- Clinical Effectiveness Research Group, University Hospital of Oslo, University of Oslo, Oslo, Norway - .,Department of Transplantation Medicine, University Hospital of Oslo, Oslo, Norway.,Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| |
Collapse
|
23
|
Yacob YM, Alquran H, Mustafa WA, Alsalatie M, Sakim HAM, Lola MS. H. pylori Related Atrophic Gastritis Detection Using Enhanced Convolution Neural Network (CNN) Learner. Diagnostics (Basel) 2023; 13:diagnostics13030336. [PMID: 36766441 PMCID: PMC9914156 DOI: 10.3390/diagnostics13030336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Atrophic gastritis (AG) is commonly caused by the infection of the Helicobacter pylori (H. pylori) bacteria. If untreated, AG may develop into a chronic condition leading to gastric cancer, which is deemed to be the third primary cause of cancer-related deaths worldwide. Precursory detection of AG is crucial to avoid such cases. This work focuses on H. pylori-associated infection located at the gastric antrum, where the classification is of binary classes of normal versus atrophic gastritis. Existing work developed the Deep Convolution Neural Network (DCNN) of GoogLeNet with 22 layers of the pre-trained model. Another study employed GoogLeNet based on the Inception Module, fast and robust fuzzy C-means (FRFCM), and simple linear iterative clustering (SLIC) superpixel algorithms to identify gastric disease. GoogLeNet with Caffe framework and ResNet-50 are machine learners that detect H. pylori infection. Nonetheless, the accuracy may become abundant as the network depth increases. An upgrade to the current standards method is highly anticipated to avoid untreated and inaccurate diagnoses that may lead to chronic AG. The proposed work incorporates improved techniques revolving within DCNN with pooling as pre-trained models and channel shuffle to assist streams of information across feature channels to ease the training of networks for deeper CNN. In addition, Canonical Correlation Analysis (CCA) feature fusion method and ReliefF feature selection approaches are intended to revamp the combined techniques. CCA models the relationship between the two data sets of significant features generated by pre-trained ShuffleNet. ReliefF reduces and selects essential features from CCA and is classified using the Generalized Additive Model (GAM). It is believed the extended work is justified with a 98.2% testing accuracy reading, thus providing an accurate diagnosis of normal versus atrophic gastritis.
Collapse
Affiliation(s)
- Yasmin Mohd Yacob
- Faculty of Electronic Engineering & Technology, Pauh Putra Campus, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
- Centre of Excellence for Advanced Computing, Pauh Putra Campus, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
| | - Hiam Alquran
- Department of Biomedical Systems and Informatics Engineering, Yarmouk University, Irbid 21163, Jordan
- Department of Biomedical Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Wan Azani Mustafa
- Centre of Excellence for Advanced Computing, Pauh Putra Campus, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
- Faculty of Electrical Engineering & Technology, Pauh Putra Campus, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
- Correspondence:
| | - Mohammed Alsalatie
- King Hussein Medical Center, Royal Jordanian Medical Service, The Institute of Biomedical Technology, Amman 11855, Jordan
| | - Harsa Amylia Mat Sakim
- School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 11800, Penang, Malaysia
| | - Muhamad Safiih Lola
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| |
Collapse
|
24
|
Panarese A, Saito Y, Zagari RM. Kyoto classification of gastritis, virtual chromoendoscopy and artificial intelligence: Where are we going? What do we need? Artif Intell Gastrointest Endosc 2023; 4:1-11. [DOI: 10.37126/aige.v4.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Chronic gastritis (CG) is a widespread and frequent disease, mainly caused by Helicobacter pylori infection, which is associated with an increased risk of gastric cancer. Virtual chromoendoscopy improves the endoscopic diagnostic efficacy, which is essential to establish the most appropriate therapy and to enable cancer prevention. Artificial intelligence provides algorithms for the diagnosis of gastritis and, in particular, early gastric cancer, but it is not yet used in practice. Thus, technological innovation, through image resolution and processing, optimizes the diagnosis and management of CG and gastric cancer. The endoscopic Kyoto classification of gastritis improves the diagnosis and management of this disease, but through the analysis of the most recent literature, new algorithms can be proposed.
Collapse
Affiliation(s)
- Alba Panarese
- Division of Gastroenterology and Digestive Endoscopy, Department of Medical Sciences, Central Hospital - Azienda Ospedaliera, Taranto 74123, Italy
| | - Yutaka Saito
- Division of Endoscopy, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Rocco Maurizio Zagari
- Gastroenterology Unit and Department of Surgical and Medical Sciences, IRCCS Azienda Ospedaliero-Universitaria and University of Bologna, Bologna 40121, Italy
| |
Collapse
|
25
|
Magalhães B, Neto A, Cunha A. Generative Adversarial Networks for Augmenting Endoscopy Image Datasets of Stomach Precancerous Lesions: A Review. IEEE ACCESS 2023; 11:136292-136307. [DOI: 10.1109/access.2023.3338545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Bruno Magalhães
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| | - Alexandre Neto
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| | - António Cunha
- Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
| |
Collapse
|
26
|
Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3:117-141. [DOI: 10.35712/aig.v3.i5.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of computer systems to perform tasks that require human intelligence. It has the capacity to revolutionize medicine by increasing efficiency, expediting data and image analysis and identifying patterns, trends and associations in large datasets. Within gastroenterology, recent research efforts have focused on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic intervention. The main objective of this narrative review is to provide a comprehensive overview of the research being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE and colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Medicine, NYU Langone Health, New York, NY 10016, United States
| | - Robert J Duve
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States
| | - Matthew O'Mara
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| |
Collapse
|
27
|
Deng Y, Qin HY, Zhou YY, Liu HH, Jiang Y, Liu JP, Bao J. Artificial intelligence applications in pathological diagnosis of gastric cancer. Heliyon 2022; 8:e12431. [PMID: 36619448 PMCID: PMC9816967 DOI: 10.1016/j.heliyon.2022.e12431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Globally, gastric cancer is the third leading cause of death from tumors. Prevention and individualized treatment are considered to be the best options for reducing the mortality rate of gastric cancer. Artificial intelligence (AI) technology has been widely used in the field of gastric cancer, including diagnosis, prognosis, and image analysis. Eligible papers were identified from PubMed and IEEE up to April 13, 2022. Through the comparison of these articles, the application status of AI technology in the diagnosis of gastric cancer was summarized, including application types, application scenarios, advantages and limitations. This review presents the current state and role of AI in the diagnosis of gastric cancer based on four aspects: 1) accurate sampling from early diagnosis (endoscopy), 2) digital pathological diagnosis, 3) molecules and genes, and 4) clinical big data analysis and prognosis prediction. AI plays a very important role in facilitating the diagnosis of gastric cancer; however, it also has shortcomings such as interpretability. The purpose of this review is to provide assistance to researchers working in this domain.
Collapse
Affiliation(s)
- Yang Deng
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hang-Yu Qin
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yan-Yan Zhou
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hong-Hong Liu
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yong Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jian-Ping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ji Bao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China,Corresponding author.
| |
Collapse
|
28
|
Ochiai K, Ozawa T, Shibata J, Ishihara S, Tada T. Current Status of Artificial Intelligence-Based Computer-Assisted Diagnosis Systems for Gastric Cancer in Endoscopy. Diagnostics (Basel) 2022; 12:diagnostics12123153. [PMID: 36553160 PMCID: PMC9777622 DOI: 10.3390/diagnostics12123153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is gradually being utilized in various fields as its performance has been improving with the development of deep learning methods, availability of big data, and the progression of computer processing units. In the field of medicine, AI is mainly implemented in image recognition, such as in radiographic and pathologic diagnoses. In the realm of gastrointestinal endoscopy, although AI-based computer-assisted detection/diagnosis (CAD) systems have been applied in some areas, such as colorectal polyp detection and diagnosis, so far, their implementation in real-world clinical settings is limited. The accurate detection or diagnosis of gastric cancer (GC) is one of the challenges in which performance varies greatly depending on the endoscopist's skill. The diagnosis of early GC is especially challenging, partly because early GC mimics atrophic gastritis in the background mucosa. Therefore, several CAD systems for GC are being actively developed. The development of a CAD system for GC is considered challenging because it requires a large number of GC images. In particular, early stage GC images are rarely available, partly because it is difficult to diagnose gastric cancer during the early stages. Additionally, the training image data should be of a sufficiently high quality to conduct proper CAD training. Recently, several AI systems for GC that exhibit a robust performance, owing to being trained on a large number of high-quality images, have been reported. This review outlines the current status and prospects of AI use in esophagogastroduodenoscopy (EGDS), focusing on the diagnosis of GC.
Collapse
Affiliation(s)
- Kentaro Ochiai
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tsuyoshi Ozawa
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Musashi-Urawa, Saitama 336-0021, Japan
- AI Medical Service Inc. Toshima-ku, Tokyo 104-0061, Japan
| | - Junichi Shibata
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Musashi-Urawa, Saitama 336-0021, Japan
- AI Medical Service Inc. Toshima-ku, Tokyo 104-0061, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Tada
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Tomohiro Tada the Institute of Gastroenterology and Proctology, Musashi-Urawa, Saitama 336-0021, Japan
- AI Medical Service Inc. Toshima-ku, Tokyo 104-0061, Japan
| |
Collapse
|
29
|
Luo Q, Yang H, Hu B. Application of artificial intelligence in the endoscopic diagnosis of early gastric cancer, atrophic gastritis, and Helicobacter pylori infection. J Dig Dis 2022; 23:666-674. [PMID: 36661411 DOI: 10.1111/1751-2980.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Gastric cancer (GC) is one of the most serious health problems worldwide. Chronic atrophic gastritis (CAG) is most commonly caused by Helicobacter pylori (H. pylori) infection. Currently, endoscopic detection of early gastric cancer (EGC) and CAG remains challenging for endoscopists, and the diagnostic accuracy of H. pylori infection by endoscopy is approximately 70%. Artificial intelligence (AI) can assist endoscopic diagnosis including detection, prediction of depth of invasion, boundary delineation, and anatomical location of EGC, and has achievable diagnostic ability even comparable to experienced endoscopists. In this review we summarized various AI-assisted systems in the diagnosis of EGC, CAG, and H. pylori infection.
Collapse
Affiliation(s)
- Qi Luo
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
30
|
Dilaghi E, Lahner E, Annibale B, Esposito G. Systematic review and meta-analysis: Artificial intelligence for the diagnosis of gastric precancerous lesions and Helicobacter pylori infection. Dig Liver Dis 2022; 54:1630-1638. [PMID: 35382973 DOI: 10.1016/j.dld.2022.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND The endoscopic diagnosis of Helicobacter-pylori(H.pylori) infection and gastric precancerous lesions(GPL), namely atrophic-gastritis and intestinal-metaplasia, still remains challenging. Artificial intelligence(AI) may represent a powerful resource for the endoscopic recognition of these conditions. AIMS To explore the diagnostic performance(DP) of AI in the diagnosis of GPL and H.pylori infection. METHODS A systematic-review was performed by two independent authors up to September 2021. Inclusion criteria were studies focusing on the DP of AI-system in the diagnosis of GPL and H.pylori infection. The pooled accuracy of studies included was reported. RESULTS Overall, 128 studies were found (PubMed-Embase-Cochrane Library) and four and nine studies were finally included regarding GPL and H.pylori infection, respectively. The pooled-accuracy(random effects model) was 90.3%(95%CI 84.3-94.9) and 79.6%(95%CI 66.7-90.0) with a significant heterogeneity[I2=90.4%(95%CI 78.5-95.7);I2=97.9%(97.2-98.6)] for GPL and H.pylori infection, respectively. The Begg's-test showed a significant publication-bias(p = 0.0371) only among studies regarding H.pylori infection. The pooled-accuracy(random-effects-model) was similar considering only studies using CNN-model for the diagnosis of H.pylori infection: 74.1%[(95%CI 51.6-91.3);I2=98.9%(95%CI 98.5-99.3)], Begg's-test(p = 0.1416) did not show publication-bias. CONCLUSION AI-system seems to be a good resource for an easier diagnosis of GPL and H.pylori infection, showing a pooled-diagnostic-accuracy of 90% and 80%, respectively. However, considering the high heterogeneity, these promising data need an external validation by randomized control trials and prospective real-time studies.
Collapse
Affiliation(s)
- E Dilaghi
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa, Roma 1035 - 00189, Italy
| | - E Lahner
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa, Roma 1035 - 00189, Italy
| | - B Annibale
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa, Roma 1035 - 00189, Italy
| | - G Esposito
- Department of Medical-Surgical Sciences and Translational Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa, Roma 1035 - 00189, Italy.
| |
Collapse
|
31
|
DeepHP: A New Gastric Mucosa Histopathology Dataset for Helicobacter pylori Infection Diagnosis. Int J Mol Sci 2022; 23:ijms232314581. [PMID: 36498907 PMCID: PMC9739080 DOI: 10.3390/ijms232314581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Emerging deep learning-based applications in precision medicine include computational histopathological analysis. However, there is a lack of the required training image datasets to generate classification and detection models. This phenomenon occurs mainly due to human factors that make it difficult to obtain well-annotated data. The present study provides a curated public collection of histopathological images (DeepHP) and a convolutional neural network model for diagnosing gastritis. Images from gastric biopsy histopathological exams were used to investigate the performance of the proposed model in detecting gastric mucosa with Helicobacter pylori infection. The DeepHP database comprises 394,926 histopathological images, of which 111 K were labeled as Helicobacter pylori positive and 283 K were Helicobacter pylori negative. We investigated the classification performance of three Convolutional Neural Network architectures. The models were tested and validated with two distinct image sets of 15% (59K patches) chosen randomly. The VGG16 architecture showed the best results with an Area Under the Curve of 0.998%. The results showed that CNN could be used to classify histopathological images from gastric mucosa with marked precision. Our model evidenced high potential and application in the computational pathology field.
Collapse
|
32
|
Li Y, Zheng X, Xie F, Ye L, Bignami E, Tandon YK, Rodríguez M, Gu Y, Sun J. Development and validation of the artificial intelligence (AI)-based diagnostic model for bronchial lumen identification. Transl Lung Cancer Res 2022; 11:2261-2274. [PMID: 36519015 PMCID: PMC9742630 DOI: 10.21037/tlcr-22-761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/08/2022] [Indexed: 08/29/2023]
Abstract
BACKGROUND Bronchoscopy is a key step in the diagnosis and treatment of respiratory diseases. However, the level of expertise varies among different bronchoscopists. Artificial intelligence (AI) may help them identify bronchial lumens. Thus, a bronchoscopy quality-control system based on AI was built to improve the performance of bronchoscopists. METHODS This single-center observational study consecutively collected bronchoscopy videos from Shanghai Chest Hospital and segmented each video into 31 different anatomical locations to develop an AI-assisted system based on a convolutional neural network (CNN) model. We then designed a single-center trial to compare the accuracy of lumen recognition by bronchoscopists with and without the assistance of the AI system. RESULTS A total of 28,441 qualified images of bronchial lumen were used to train the CNNs. In the cross-validation set, the optimal accuracy of the six models was between 91.83% and 96.62%. In the test set, the visual geometry group 16 (VGG-16) achieved optimal performance with an accuracy of 91.88%, and an area under the curve of 0.995. In the clinical evaluation, the accuracy rate of the AI system alone was 54.30% (202/372). For the identification of bronchi except for segmental bronchi, the accuracy was 82.69% (129/156). In group 1, the recognition accuracy rates of doctors A, B, a and b alone were 42.47%, 34.68%, 28.76%, and 29.57%, respectively, but increased to 57.53%, 54.57%, 54.57%, and 46.24% respectively when combined with the AI system. Similarly, in group 2, the recognition accuracy rates of doctors C, D, c, and d were 37.90%, 41.40%, 30.91%, and 33.60% respectively, but increased to 51.61%, 47.85%, 53.49%, and 54.30% respectively, when combined with the AI system. Except for doctor D, the accuracy of doctors in recognizing lumen was significantly higher with AI assistance than without AI assistance, regardless of their experience (P<0.001). CONCLUSIONS Our AI system could better recognize bronchial lumen and reduce differences in the operation levels of different bronchoscopists. It could be used to improve the quality of everyday bronchoscopies.
Collapse
Affiliation(s)
- Ying Li
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Xiaoxuan Zheng
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Fangfang Xie
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Lin Ye
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| | - Elena Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - María Rodríguez
- Department of Thoracic Surgery, Clínica Universidad de Navarra, Madrid, Spain
| | - Yun Gu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Engineering Research Center of Respiratory Endoscopy, Shanghai, China
| |
Collapse
|
33
|
Ortiz Zúñiga O, Fernández Esparrach MG, Daca M, Pellisé M. Artificial intelligence in gastrointestinal endoscopy - Evolution to a new era. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2022; 114:605-615. [PMID: 35770604 DOI: 10.17235/reed.2022.8961/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial intelligence (AI) systems based on machine learning have evolved in the last few years with an increasing applicability in gastrointestinal endoscopy. Thanks to AI, an image (input) can be transformed into a clinical decision (output). Although AI systems have been initially studied to improve detection (CADe) and characterization of colorectal lesions (CADx), other indications are being currently investigated as detection of blind spots, scope guidance, or delineation/measurement of lesions. The objective of these review is to summarize the current evidence on applicability of AI systems in gastrointestinal endoscopy, highlight strengths and limitations of the technology and review regulatory and ethical aspects for its general implementation in gastrointestinal endoscopy.
Collapse
Affiliation(s)
| | | | - María Daca
- Gastroenterología, Hospital Clínic Barcelona, España
| | - María Pellisé
- Gastroenterología, Hospital Clínic Barcelona, España
| |
Collapse
|
34
|
Deep Neural Network Models for Colon Cancer Screening. Cancers (Basel) 2022; 14:cancers14153707. [PMID: 35954370 PMCID: PMC9367621 DOI: 10.3390/cancers14153707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Deep learning models have been shown to achieve high performance in diagnosing colon cancer compared to conventional image processing and hand-crafted machine learning methods. Hence, several studies have focused on developing hybrid learning, end-to-end, and transfer learning techniques to reduce manual interaction and for labelling the regions of interest. However, these weak learning techniques do not always provide a clear diagnosis. Therefore, it is necessary to develop a clear explainable learning method that can highlight factors and form the basis of clinical decisions. However, there has been little research carried out employing such transparent approaches. This study discussed the aforementioned models for colon cancer diagnosis. Abstract Early detection of colorectal cancer can significantly facilitate clinicians’ decision-making and reduce their workload. This can be achieved using automatic systems with endoscopic and histological images. Recently, the success of deep learning has motivated the development of image- and video-based polyp identification and segmentation. Currently, most diagnostic colonoscopy rooms utilize artificial intelligence methods that are considered to perform well in predicting invasive cancer. Convolutional neural network-based architectures, together with image patches and preprocesses are often widely used. Furthermore, learning transfer and end-to-end learning techniques have been adopted for detection and localization tasks, which improve accuracy and reduce user dependence with limited datasets. However, explainable deep networks that provide transparency, interpretability, reliability, and fairness in clinical diagnostics are preferred. In this review, we summarize the latest advances in such models, with or without transparency, for the prediction of colorectal cancer and also address the knowledge gap in the upcoming technology.
Collapse
|
35
|
An artificial intelligence algorithm is highly accurate for detecting endoscopic features of eosinophilic esophagitis. Sci Rep 2022; 12:11115. [PMID: 35778456 PMCID: PMC9249895 DOI: 10.1038/s41598-022-14605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
The endoscopic features associated with eosinophilic esophagitis (EoE) may be missed during routine endoscopy. We aimed to develop and evaluate an Artificial Intelligence (AI) algorithm for detecting and quantifying the endoscopic features of EoE in white light images, supplemented by the EoE Endoscopic Reference Score (EREFS). An AI algorithm (AI-EoE) was constructed and trained to differentiate between EoE and normal esophagus using endoscopic white light images extracted from the database of the University Hospital Augsburg. In addition to binary classification, a second algorithm was trained with specific auxiliary branches for each EREFS feature (AI-EoE-EREFS). The AI algorithms were evaluated on an external data set from the University of North Carolina, Chapel Hill (UNC), and compared with the performance of human endoscopists with varying levels of experience. The overall sensitivity, specificity, and accuracy of AI-EoE were 0.93 for all measures, while the AUC was 0.986. With additional auxiliary branches for the EREFS categories, the AI algorithm (AI-EoE-EREFS) performance improved to 0.96, 0.94, 0.95, and 0.992 for sensitivity, specificity, accuracy, and AUC, respectively. AI-EoE and AI-EoE-EREFS performed significantly better than endoscopy beginners and senior fellows on the same set of images. An AI algorithm can be trained to detect and quantify endoscopic features of EoE with excellent performance scores. The addition of the EREFS criteria improved the performance of the AI algorithm, which performed significantly better than endoscopists with a lower or medium experience level.
Collapse
|
36
|
Mărginean CO, Meliț LE, Săsăran MO. Traditional and Modern Diagnostic Approaches in Diagnosing Pediatric Helicobacter pylori Infection. CHILDREN 2022; 9:children9070994. [PMID: 35883980 PMCID: PMC9316053 DOI: 10.3390/children9070994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 01/10/2023]
Abstract
Helicobacter pylori (H. pylori) is the most common bacterial infection worldwide, is usually acquired during childhood and is related to gastric carcinogenesis during adulthood. Therefore, its early proper diagnosis and subsequent successful eradication represent the cornerstones of gastric cancer prevention. The aim of this narrative review was to assess traditional and modern diagnostic methods in terms of H. pylori diagnosis. Several invasive and non-invasive methods were described, each with its pros and cons. The invasive diagnostic methods comprise endoscopy with biopsy, rapid urease tests, histopathological exams, cultures and biopsy-based molecular tests. Among these, probably the most available, accurate and cost-effective test remains histology, albeit molecular tests definitely remain the most accurate despite their high costs. The non-invasive tests consist of urea breath tests, serology, stool antigens and non-invasive molecular tests. Urea breath tests and stool antigens are the most useful in clinical practice both for the diagnosis of H. pylori infection and for monitoring the eradication of this infection after therapy. The challenges related to accurate diagnosis lead to a choice that must be based on H. pylori virulence, environmental factors and host peculiarities.
Collapse
Affiliation(s)
- Cristina Oana Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania;
| | - Lorena Elena Meliț
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania;
- Correspondence:
| | - Maria Oana Săsăran
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania;
| |
Collapse
|
37
|
Lima G, Coimbra M, Dinis-Ribeiro M, Libanio D, Renna F. Analysis of classification tradeoff in deep learning for gastric cancer detection. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2177-2180. [PMID: 36086270 DOI: 10.1109/embc48229.2022.9871040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study aimed to build convolutional neural network (CNN) models capable of classifying upper endoscopy images, to determine the stage of infection in the development of a gastric cancer. Two different problems were covered. A first one with a smaller number of categorical classes and a lower degree of detail. A second one, consisting of a larger number of classes, corresponding to each stage of precancerous conditions in the Correa's cascade. Three public datasets were used to build the dataset that served as input for the classification tasks. The CNN models built for this study are capable of identifying the stage of precancerous conditions/lesions in the moment of an upper endoscopy. A model based on the DenseNet169 architecture achieved an average accuracy of 0.72 in discriminating among the different stages of infection. The trade-off between detail in the definition of lesion classes and classification performance has been explored. Results from the application of Grad CAMs to the trained models show that the proposed CNN architectures base their classification output on the extraction of physiologically relevant image features. Clinical relevance- This research could improve the accuracy of upper endoscopy exams, which have margin for improvement, by assisting doctors when analysing the lesions seen in patient's images.
Collapse
|
38
|
Yoo BS, Houston KV, D'Souza SM, Elmahdi A, Davis I, Vilela A, Parekh PJ, Johnson DA. Advances and horizons for artificial intelligence of endoscopic screening and surveillance of gastric and esophageal disease. Artif Intell Med Imaging 2022; 3:70-86. [DOI: 10.35711/aimi.v3.i3.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
The development of artificial intelligence in endoscopic assessment of the gastrointestinal tract has shown progressive enhancement in diagnostic acuity. This review discusses the expanding applications for gastric and esophageal diseases. The gastric section covers the utility of AI in detecting and characterizing gastric polyps and further explores prevention, detection, and classification of gastric cancer. The esophageal discussion highlights applications for use in screening and surveillance in Barrett's esophagus and in high-risk conditions for esophageal squamous cell carcinoma. Additionally, these discussions highlight applications for use in assessing eosinophilic esophagitis and future potential in assessing esophageal microbiome changes.
Collapse
Affiliation(s)
- Byung Soo Yoo
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, United States
| | - Kevin V Houston
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Steve M D'Souza
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, United States
| | - Alsiddig Elmahdi
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, United States
| | - Isaac Davis
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, United States
| | - Ana Vilela
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, United States
| | - Parth J Parekh
- Division of Gastroenterology, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, United States
| | - David A Johnson
- Division of Gastroenterology, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, United States
| |
Collapse
|
39
|
Yang CB, Kim SH, Lim YJ. Preparation of image databases for artificial intelligence algorithm development in gastrointestinal endoscopy. Clin Endosc 2022; 55:594-604. [PMID: 35636749 PMCID: PMC9539300 DOI: 10.5946/ce.2021.229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/07/2022] [Indexed: 12/09/2022] Open
Abstract
Over the past decade, technological advances in deep learning have led to the introduction of artificial intelligence (AI) in medical imaging. The most commonly used structure in image recognition is the convolutional neural network, which mimics the action of the human visual cortex. The applications of AI in gastrointestinal endoscopy are diverse. Computer-aided diagnosis has achieved remarkable outcomes with recent improvements in machine-learning techniques and advances in computer performance. Despite some hurdles, the implementation of AI-assisted clinical practice is expected to aid endoscopists in real-time decision-making. In this summary, we reviewed state-of-the-art AI in the field of gastrointestinal endoscopy and offered a practical guide for building a learning image dataset for algorithm development.
Collapse
Affiliation(s)
- Chang Bong Yang
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Sang Hoon Kim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| |
Collapse
|
40
|
Development of a Deep Learning Model for Malignant Small Bowel Tumors Survival: A SEER-Based Study. Diagnostics (Basel) 2022; 12:diagnostics12051247. [PMID: 35626403 PMCID: PMC9141623 DOI: 10.3390/diagnostics12051247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background This study aims to explore a deep learning (DL) algorithm for developing a prognostic model and perform survival analyses in SBT patients. Methods The demographic and clinical features of patients with SBTs were extracted from the Surveillance, Epidemiology and End Results (SEER) database. We randomly split the samples into the training set and the validation set at 7:3. Cox proportional hazards (Cox-PH) analysis and the DeepSurv algorithm were used to develop models. The performance of the Cox-PH and DeepSurv models was evaluated using receiver operating characteristic curves, calibration curves, C-statistics and decision-curve analysis (DCA). A Kaplan−Meier (K−M) survival analysis was performed for further explanation on prognostic effect of the Cox-PH model. Results The multivariate analysis demonstrated that seven variables were associated with cancer-specific survival (CSS) (all p < 0.05). The DeepSurv model showed better performance than the Cox-PH model (C-index: 0.871 vs. 0.866). The calibration curves and DCA revealed that the two models had good discrimination and calibration. Moreover, patients with ileac malignancy and N2 stage disease were not responding to surgery according to the K−M analysis. Conclusions This study reported a DeepSurv model that performed well in CSS in SBT patients. It might offer insights into future research to explore more DL algorithms in cohort studies.
Collapse
|
41
|
Abstract
Artificial intelligence (AI) is rapidly developing in various medical fields, and there is an increase in research performed in the field of gastrointestinal (GI) endoscopy. In particular, the advent of convolutional neural network, which is a class of deep learning method, has the potential to revolutionize the field of GI endoscopy, including esophagogastroduodenoscopy (EGD), capsule endoscopy (CE), and colonoscopy. A total of 149 original articles pertaining to AI (27 articles in esophagus, 30 articles in stomach, 29 articles in CE, and 63 articles in colon) were identified in this review. The main focuses of AI in EGD are cancer detection, identifying the depth of cancer invasion, prediction of pathological diagnosis, and prediction of Helicobacter pylori infection. In the field of CE, automated detection of bleeding sites, ulcers, tumors, and various small bowel diseases is being investigated. AI in colonoscopy has advanced with several patient-based prospective studies being conducted on the automated detection and classification of colon polyps. Furthermore, research on inflammatory bowel disease has also been recently reported. Most studies of AI in the field of GI endoscopy are still in the preclinical stages because of the retrospective design using still images. Video-based prospective studies are needed to advance the field. However, AI will continue to develop and be used in daily clinical practice in the near future. In this review, we have highlighted the published literature along with providing current status and insights into the future of AI in GI endoscopy.
Collapse
Affiliation(s)
- Yutaka Okagawa
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Gastroenterology, Tonan Hospital, Sapporo, Japan
| | - Seiichiro Abe
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Masayoshi Yamada
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ichiro Oda
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
42
|
Panarese A. Usefulness of artificial intelligence in early gastric cancer. Artif Intell Cancer 2022; 3:17-26. [DOI: 10.35713/aic.v3.i2.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a major cancer worldwide, with high mortality and morbidity. Endoscopy, important for the early detection of GC, requires trained skills, high-quality technologies, surveillance and screening programs. Early diagnosis allows a better prognosis, through surgical or curative endoscopic therapy. Magnified endoscopy with virtual chromoendoscopy remarkably improve the detection of early gastric cancer (EGC) when endoscopy is performed by expert endoscopists. Artificial intelligence (AI) has also been introduced to GC diagnostics to increase diagnostic efficiency. AI improves the early detection of gastric lesions because it supports the non-expert and experienced endoscopist in defining the margins of the tumor and the depth of infiltration. AI increases the detection rate of EGC, reduces the rate of missing tumors, and characterizes EGCs, allowing clinicians to make the best therapeutic decision, that is, one that ensures curability. AI has had a remarkable evolution in medicine in recent years, moving from the research phase to clinical practice. In addition, the diagnosis of GC has markedly progressed. We predict that AI will allow great evolution in the diagnosis and treatment of EGC by overcoming the variability in performance that is currently a limitation of chromoendoscopy.
Collapse
Affiliation(s)
- Alba Panarese
- Department of Gastroenterology and Endoscopy, Central Hospital, Taranto 74123, Italy
| |
Collapse
|
43
|
Yu T, Lin N, Zhong X, Zhang X, Zhang X, Chen Y, Liu J, Hu W, Duan H, Si J. Multi-label recognition of cancer-related lesions with clinical priors on white-light endoscopy. Comput Biol Med 2022; 143:105255. [PMID: 35151153 DOI: 10.1016/j.compbiomed.2022.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/07/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
Deep learning-based computer-aided diagnosis techniques have demonstrated encouraging performance in endoscopic lesion identification and detection, and have reduced the rate of missed and false detections of disease during endoscopy. However, the interpretability of the model-based results has not been adequately addressed by existing methods. This phenomenon is directly manifested by a significant bias in the representation of feature localization. Good recognition models experience severe feature localization errors, particularly for lesions with subtle morphological features, and such unsatisfactory performance hinders the clinical deployment of models. To effectively alleviate this problem, we proposed a solution to optimize the localization bias in feature representations of cancer-related recognition models that is difficult to accurately label and identify in clinical practice. Optimization was performed in the training phase of the model through the proposed data augmentation method and auxiliary loss function based on clinical priors. The data augmentation method, called partial jigsaw, can "break" the spatial structure of lesion-independent image blocks and enrich the data feature space to decouple the interference of background features on the space and focus on fine-grained lesion features. The annotation-based auxiliary loss function used class activation maps for sample distribution correction and led the model to present localization representation converging on the gold standard annotation of visualization maps. The results show that with the improvement of our method, the precision of model recognition reached an average of 92.79%, an F1-score of 92.61%, and accuracy of 95.56% based on a dataset constructed from 23 hospitals. In addition, we quantified the evaluation representation of visualization feature maps. The improved model yielded significant offset correction results for visualized feature maps compared with the baseline model. The average visualization-weighted positive coverage improved from 51.85% to 83.76%. The proposed approach did not change the deployment capability and inference speed of the original model and can be incorporated into any state-of-the-art neural network. It also shows the potential to provide more accurate localization inference results and assist in clinical examinations during endoscopies.
Collapse
Affiliation(s)
- Tao Yu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Ne Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Xingwei Zhong
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China
| | - Xiaoyan Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Xinsen Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yihe Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jiquan Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
| | - Weiling Hu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Huilong Duan
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Medical School, Zhejiang University, Hangzhou, China; Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Real-Time Multi-Label Upper Gastrointestinal Anatomy Recognition from Gastroscope Videos. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Esophagogastroduodenoscopy (EGD) is a critical step in the diagnosis of upper gastrointestinal disorders. However, due to inexperience or high workload, there is a wide variation in EGD performance by endoscopists. Variations in performance may result in exams that do not completely cover all anatomical locations of the stomach, leading to a potential risk of missed diagnosis of gastric diseases. Numerous guidelines or expert consensus have been proposed to assess and optimize the quality of endoscopy. However, there is a lack of mature and robust methods to accurately apply to real clinical real-time video environments. In this paper, we innovatively define the problem of recognizing anatomical locations in videos as a multi-label recognition task. This can be more consistent with the model learning of image-to-label mapping relationships. We propose a combined structure of a deep learning model (GL-Net) that combines a graph convolutional network (GCN) with long short-term memory (LSTM) networks to both extract label features and correlate temporal dependencies for accurate real-time anatomical locations identification in gastroscopy videos. Our methodological evaluation dataset is based on complete videos of real clinical examinations. A total of 29,269 images from 49 videos were collected as a dataset for model training and validation. Another 1736 clinical videos were retrospectively analyzed and evaluated for the application of the proposed model. Our method achieves 97.1% mean accuracy (mAP), 95.5% mean per-class accuracy and 93.7% average overall accuracy in a multi-label classification task, and is able to process these videos in real-time at 29.9 FPS. In addition, based on our approach, we designed a system to monitor routine EGD videos in detail and perform statistical analysis of the operating habits of endoscopists, which can be a useful tool to improve the quality of clinical endoscopy.
Collapse
|
45
|
Zhao Q, Chi T. Deep learning model can improve the diagnosis rate of endoscopic chronic atrophic gastritis: a prospective cohort study. BMC Gastroenterol 2022; 22:133. [PMID: 35321641 PMCID: PMC8941797 DOI: 10.1186/s12876-022-02212-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/15/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND AIMS Chronic atrophic gastritis (CAG) is a precancerous form of gastric cancer. However, with pathological diagnosis as the gold standard, the sensitivity of endoscopic diagnosis of atrophy is only 42%. We developed a deep learning (DL)-based real-time video monitoring diagnostic model for endoscopic CAG and conducted a prospective cohort study to verify whether this diagnostic model could improve the diagnosis rate of endoscopic CAG compared with that of endoscopists. METHODS A U-NET network was used to build a real-time video monitoring diagnostic model for endoscopic CAG based on DL. We enrolled 431 patients who underwent gastroscopy from October 1, 2020, to December 1, 2020. To keep the baseline data of enrolled patient uniform and control for confounding factors, we applied a paired design and included the same patients in both the DL and the endoscopist group. RESULTS The DL model improved the diagnosis rate of endoscopic CAG compared with that of endoscopists. Compared with diagnoses by endoscopists, the proportions of moderate and severe CAG in the atrophy patients diagnosed by the DL model were significantly larger, the proportion of "type O" CAG was significantly larger, the number of atrophy sites found was significantly increased, and the number of biopsies was significantly decreased. Compared with diagnoses by endoscopists, in the atrophic lesions diagnosed by the DL model, the proportions of severe atrophy and severe intestinal metaplasia were significantly increased. CONCLUSIONS Our study suggested the DL model could improve the diagnosis rate of endoscopic CAG compared with that of endoscopists. TRIAL REGISTRATION ChiCTR2100044458, 18/03/2020.
Collapse
Affiliation(s)
- Quchuan Zhao
- Department of Gastroenterology, Xuanwu Hospital of Capital Medical University, 45 Chang-chun Street, Beijing, 100053, China
| | - Tianyu Chi
- Department of Gastroenterology, Xuanwu Hospital of Capital Medical University, 45 Chang-chun Street, Beijing, 100053, China.
| |
Collapse
|
46
|
Tsuneki M. Deep learning models in medical image analysis. J Oral Biosci 2022; 64:312-320. [PMID: 35306172 DOI: 10.1016/j.job.2022.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Deep learning is a state-of-the-art technology that has rapidly become the method of choice for medical image analysis. Its fast and robust object detection, segmentation, tracking, and classification of pathophysiological anatomical structures can support medical practitioners during routine clinical workflow. Thus, deep learning-based applications for diseases diagnosis will empower physicians and allow fast decision-making in clinical practice. HIGHLIGHT Deep learning can be more robust with various features for differentiating classes, provided the training set is large and diverse for analysis. However, sufficient medical images for training sets are not always available from medical institutions, which is one of the major limitations of deep learning in medical image analysis. This review article presents some solutions for this issue and discusses efforts needed to develop robust deep learning-based computer-aided diagnosis applications for better clinical workflow in endoscopy, radiology, pathology, and dentistry. CONCLUSION The introduction of deep learning-based applications will enhance the traditional role of medical practitioners in ensuring accurate diagnoses and treatment in terms of precision, reproducibility, and scalability.
Collapse
Affiliation(s)
- Masayuki Tsuneki
- Medmain Research, Medmain Inc., Fukuoka, Japan; Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
47
|
Mizuno S, Okabayashi K, Ikebata A, Matsui S, Seishima R, Shigeta K, Kitagawa Y. Prediction of pouchitis after ileal pouch-anal anastomosis in patients with ulcerative colitis using artificial intelligence and deep learning. Tech Coloproctol 2022; 26:471-478. [PMID: 35233723 DOI: 10.1007/s10151-022-02602-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pouchitis is one of the major postoperative complications of ulcerative colitis (UC), and it is still difficult to predict the development of pouchitis after ileal pouch-anal anastomosis (IPAA) in UC patients. In this study, we examined whether a deep learning (DL) model could predict the development of pouchitis. METHODS UC patients who underwent two-stage restorative proctocolectomy with IPAA at Keio University Hospital were included in this retrospective analysis. The modified pouchitis disease activity index (mPDAI) was evaluated by the clinical and endoscopic findings. Pouchitis was defined as an mPDAI ≥ 5.860; endoscopic pouch images before ileostomy closure were collected. A convolutional neural network was used as the DL model, and the prediction rates of pouchitis after ileostomy closure were evaluated by fivefold cross-validation. RESULTS A total of 43 patients were included (24 males and 19 females, mean age 39.2 ± 13.2 years). Pouchitis occurred in 14 (33%) patients after ileostomy closure. In less than half of the patients, mPDAI scores matched before and after ileostomy closure. Most of patients whose mPDAI scores did not match before and after ileostomy closure had worse mPDAI scores after than before. The prediction rate of pouchitis calculated by the area under the curve using the DL model was 84%. Conversely, the prediction rate of pouchitis using mPDAI before ileostomy closure was 62%. CONCLUSION The prediction rate of pouchitis using the DL model was more than 20% higher than that using mPDAI, suggesting the utility of the DL model as a prediction model for the development of pouchitis. It could also be used to determine early interventions for pouchitis.
Collapse
Affiliation(s)
- S Mizuno
- Department of Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - K Okabayashi
- Department of Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - A Ikebata
- Department of Surgery, Saitama Medical Center, Saitama, Japan
| | - S Matsui
- Department of Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - R Seishima
- Department of Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - K Shigeta
- Department of Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Y Kitagawa
- Department of Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
48
|
Maulahela H, Annisa NG. Current advancements in application of artificial intelligence in clinical decision-making by gastroenterologists in gastrointestinal bleeding. Artif Intell Gastroenterol 2022; 3:13-20. [DOI: 10.35712/aig.v3.i1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/24/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Artificial Intelligence (AI) is a type of intelligence that comes from machines or computer systems that mimics human cognitive function. Recently, AI has been utilized in medicine and helped clinicians make clinical decisions. In gastroenterology, AI has assisted colon polyp detection, optical biopsy, and diagnosis of Helicobacter pylori infection. AI also has a broad role in the clinical prediction and management of gastrointestinal bleeding. Machine learning can determine the clinical risk of upper and lower gastrointestinal bleeding. AI can assist the management of gastrointestinal bleeding by identifying high-risk patients who might need urgent endoscopic treatment or blood transfusion, determining bleeding stigmata during endoscopy, and predicting recurrence of gastrointestinal bleeding. The present review will discuss the role of AI in the clinical prediction and management of gastrointestinal bleeding, primarily on how it could assist gastroenterologists in their clinical decision-making compared to conventional methods. This review will also discuss challenges in implementing AI in routine practice.
Collapse
Affiliation(s)
- Hasan Maulahela
- Department of Internal Medicine, Gastroenterology Division, Faculty of Medicine University of Indonesia - Cipto Mangunkusumo General Central National Hospital, Jakarta 10430, Indonesia
| | | |
Collapse
|
49
|
Pyloric Incompetence Associated with Helicobactor pylori Infection and Correlated to the Severity of Atrophic Gastritis. Diagnostics (Basel) 2022; 12:diagnostics12030572. [PMID: 35328125 PMCID: PMC8947545 DOI: 10.3390/diagnostics12030572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Duodenogastric reflux (DGR) causes bile reflux gastritis (BRG) and may develop into gastric cancer. DGR is classified as primary in non-operated stomachs or secondary to surgical intervention. Primary DGR and Helicobacter pylori (H. pylori) infection are reportedly related. However, the mechanism is not fully understood. This study aimed to elucidate the relationship between H. pylori infection and pyloric incompetence in a non-operated stomach. A total of 502 non-operated participants who underwent an upper intestinal endoscopy were prospectively enrolled. Endoscopic findings (EAC, endoscopic atrophy classification; nodular gastritis; xanthoma; fundic gland polyp; and incompetence of pylorus), sex, age, gastrin, pepsinogen (PG) I and PG II levels were evaluated. PG I/PG II ratio, anti-H. pylori-Ab positivity, and atrophic gastritis status were significantly different between the normal and incompetent pylori (p = 0.043, <0.001, and 0.001, respectively). Open-type atrophic gastritis was significantly higher in the incompetent pylori. Incompetence of the pylorus and EAC were moderately correlated (Cramer’s V = 0.25). Multivariate analysis revealed that the presence of anti-H. pylori-Ab was the only independent factor associated with the incompetence of the pylorus, with an adjusted odds ratio of 2.70 (95% CI: 1.47−4.94, p = 0.001). In conclusion, pyloric incompetence was associated with H. pylori infection and moderately correlated to the severity of atrophic gastritis in non-operated stomachs.
Collapse
|
50
|
Jin Z, Gan T, Wang P, Fu Z, Zhang C, Yan Q, Zheng X, Liang X, Ye X. Deep learning for gastroscopic images: computer-aided techniques for clinicians. Biomed Eng Online 2022; 21:12. [PMID: 35148764 PMCID: PMC8832738 DOI: 10.1186/s12938-022-00979-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric disease is a major health problem worldwide. Gastroscopy is the main method and the gold standard used to screen and diagnose many gastric diseases. However, several factors, such as the experience and fatigue of endoscopists, limit its performance. With recent advancements in deep learning, an increasing number of studies have used this technology to provide on-site assistance during real-time gastroscopy. This review summarizes the latest publications on deep learning applications in overcoming disease-related and nondisease-related gastroscopy challenges. The former aims to help endoscopists find lesions and characterize them when they appear in the view shed of the gastroscope. The purpose of the latter is to avoid missing lesions due to poor-quality frames, incomplete inspection coverage of gastroscopy, etc., thus improving the quality of gastroscopy. This study aims to provide technical guidance and a comprehensive perspective for physicians to understand deep learning technology in gastroscopy. Some key issues to be handled before the clinical application of deep learning technology and the future direction of disease-related and nondisease-related applications of deep learning to gastroscopy are discussed herein.
Collapse
Affiliation(s)
- Ziyi Jin
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Tianyuan Gan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Peng Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zuoming Fu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Chongan Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Qinglai Yan
- Hangzhou Center for Medical Device Quality Supervision and Testing, CFDA, Hangzhou, 310000, People's Republic of China
| | - Xueyong Zheng
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Xiao Liang
- Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|