1
|
Wang Y, Khan FA, Siddiqui M, Aamer M, Lu C, Choudhary MI. The genus Schefflera: A review of traditional uses, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:113675. [PMID: 33301919 DOI: 10.1016/j.jep.2020.113675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schefflera is the largest genus in the family Araliaceae, which contains 602 known species indigenous to Asia, Africa, and the southwest Pacific region, several of which are used in traditional medicine. AIM OF THE REVIEW The review discusses current knowledge of the traditional uses, phytochemistry, and biological activities of Schefflera species, to assess the medicinal potential of this genus. MATERIALS AND METHODS The literature were explored using the keyword "Schefflera" in SciFinder®, Google Scholar®, and PubMed® databases. The taxonomy of all reported plants was authenticated using "The Plant List". Additional data on traditional uses was obtained from secondary references including books and online resources. RESULTS Fourteen species were documented as traditional medicines in China, India, Vietnam, Thailand, and Indonesia, specifically to manage rheumatism, pain, and trauma. Other species are used in the treatment of liver disorders, skin conditions, respiratory infections, cancer, diarrhea, malaria, paralysis, and many other conditions. The main phytochemical constituents identified were triterpenoids and saponins, with sesquiterpenes, phenylpropanoids, and lignans. Pharmacological properties of extracts and pure isolated compounds included analgesic, anti-inflammatory, anticancer, hypoglycemic, antimicrobial, hepatoprotective, neuroprotective, antimalarial, and antiallergic effects. CONCLUSION The reported biological activities of Schefflera species support their traditional uses, although the available data, even for medicinal species, was limited. Reports of chemical constituents or biological activities could be found for only about 20 species, but suggest that further investigation of efficacy and safety of the largely unexplored genus Schefflera is necessary.
Collapse
Affiliation(s)
- Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Farooq-Ahmad Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Mahwish Siddiqui
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Muhammad Aamer
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Cong Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - M Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
2
|
Attarian S, Young P, Brannagan TH, Adams D, Van Damme P, Thomas FP, Casanovas C, Kafaie J, Tard C, Walter MC, Péréon Y, Walk D, Stino A, de Visser M, Verhamme C, Amato A, Carter G, Magy L, Statland JM, Felice K. A double-blind, placebo-controlled, randomized trial of PXT3003 for the treatment of Charcot-Marie-Tooth type 1A. Orphanet J Rare Dis 2021; 16:433. [PMID: 34656144 PMCID: PMC8520617 DOI: 10.1186/s13023-021-02040-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 1A (CMT1A) is a rare, orphan, hereditary neuromuscular disorder with no cure and for which only symptomatic treatment is currently available. A previous phase 2 trial has shown preliminary evidence of efficacy for PXT3003 in treating CMT1A. This phase 3, international, randomized, double-blind, placebo-controlled study further investigated the efficacy and safety of high- or low-dose PXT3003 (baclofen/naltrexone/D-sorbitol [mg]: 6/0.70/210 or 3/0.35/105) in treating subjects with mild to moderate CMT1A. METHODS In this study, 323 subjects with mild-to-moderate CMT1A were randomly assigned in a 1:1:1 ratio to receive 5 mL of high- or low-dose PXT3003, or placebo, orally twice daily for up to 15 months. Efficacy was assessed using the change in Overall Neuropathy Limitations Scale total score from baseline to months 12 and 15 (primary endpoint). Secondary endpoints included the 10-m walk test and other assessments. The high-dose group was discontinued early due to unexpected crystal formation in the high-dose formulation, which resulted in an unanticipated high discontinuation rate, overall and especially in the high-dose group. The statistical analysis plan was adapted to account for the large amount of missing data before database lock, and a modified full analysis set was used in the main analyses. Two sensitivity analyses were performed to check the interpretation based on the use of the modified full analysis set. RESULTS High-dose PXT3003 demonstrated significant improvement in the Overall Neuropathy Limitations Scale total score vs placebo (mean difference: - 0.37 points; 97.5% CI [- 0.68 to - 0.06]; p = 0.008), and consistent treatment effects were shown in the sensitivity analyses. Both PXT3003 doses were safe and well-tolerated. CONCLUSION The high-dose group demonstrated a statistically significant improvement in the primary endpoint and a good safety profile. Overall, high-dose PXT3003 is a promising treatment option for patients with Charcot-Marie-Tooth disease type 1A.
Collapse
Affiliation(s)
- Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALS, CHU La Timone, Marseille, France.
| | - Peter Young
- Department of Neurology, Medical Park Bad Feilnbach, Bad Feilnbach, Germany
| | - Thomas H Brannagan
- Columbia University Medical Center, The Neurological Institute, New York, USA
| | - David Adams
- French Reference Center for Rare Peripheral Neuropathies, Service de Neurologie Adulte, APHP, CHU Bicêtre, Le Kremlin Bicêtre, France
| | - Philip Van Damme
- Department of Neurology, University Hospitals Leuven, KU, Leuven, Belgium
- Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Florian P Thomas
- Department of Neurology, Hackensack University Medical Center, Hackensack, USA
- Department of Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | - Carlos Casanovas
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Barcelona, Spain
- Neurometabolic Diseases Group, Bellvitge Research Institute (IDIBELL) and CIBERER, Barcelona, Spain
| | - Jafar Kafaie
- Department of Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | - Céline Tard
- U1171, Centre de référence des maladies neuromusculaires Nord Est Ile de France, Hôpital Salengro CHU de Lille, Lille, France
| | - Maggie C Walter
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Yann Péréon
- Centre de Référence Maladies Neuromusculaires AOC, Filnemus, Euro-NMD, CHU Nantes, Hôtel-Dieu, Nantes, France
| | - David Walk
- Clinical Neuroscience Research Unit, University of Minnesota, Minneapolis, USA
| | - Amro Stino
- University of Michigan Health System, Ann Arbor, MI, USA
| | - Marianne de Visser
- Department of Neurology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Camiel Verhamme
- Department of Neurology, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Anthony Amato
- Department of Neurology, Brigham and Women's Hospital, Boston, USA
| | - Gregory Carter
- St. Luke's Rehabilitation Institute, Physical Medicine and Rehabilitation, Spokane, USA
| | | | | | - Kevin Felice
- Department of Neuromuscular Medicine, Hospital for Special Care, New Britain, USA
| |
Collapse
|
4
|
Chumakov I, Milet A, Cholet N, Primas G, Boucard A, Pereira Y, Graudens E, Mandel J, Laffaire J, Foucquier J, Glibert F, Bertrand V, Nave KA, Sereda MW, Vial E, Guedj M, Hajj R, Nabirotchkin S, Cohen D. Polytherapy with a combination of three repurposed drugs (PXT3003) down-regulates Pmp22 over-expression and improves myelination, axonal and functional parameters in models of CMT1A neuropathy. Orphanet J Rare Dis 2014; 9:201. [PMID: 25491744 PMCID: PMC4279797 DOI: 10.1186/s13023-014-0201-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/24/2014] [Indexed: 11/24/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited sensory and motor peripheral neuropathy. It is caused by PMP22 overexpression which leads to defects of peripheral myelination, loss of long axons, and progressive impairment then disability. There is no treatment available despite observations that monotherapeutic interventions slow progression in rodent models. We thus hypothesized that a polytherapeutic approach using several drugs, previously approved for other diseases, could be beneficial by simultaneously targeting PMP22 and pathways important for myelination and axonal integrity. A combination of drugs for CMT1A polytherapy was chosen from a group of authorised drugs for unrelated diseases using a systems biology approach, followed by pharmacological safety considerations. Testing and proof of synergism of these drugs were performed in a co-culture model of DRG neurons and Schwann cells derived from a Pmp22 transgenic rat model of CMT1A. Their ability to lower Pmp22 mRNA in Schwann cells relative to house-keeping genes or to a second myelin transcript (Mpz) was assessed in a clonal cell line expressing these genes. Finally in vivo efficacy of the combination was tested in two models: CMT1A transgenic rats, and mice that recover from a nerve crush injury, a model to assess neuroprotection and regeneration. Combination of (RS)-baclofen, naltrexone hydrochloride and D-sorbitol, termed PXT3003, improved myelination in the Pmp22 transgenic co-culture cellular model, and moderately down-regulated Pmp22 mRNA expression in Schwannoma cells. In both in vitro systems, the combination of drugs was revealed to possess synergistic effects, which provided the rationale for in vivo clinical testing of rodent models. In Pmp22 transgenic CMT1A rats, PXT3003 down-regulated the Pmp22 to Mpz mRNA ratio, improved myelination of small fibres, increased nerve conduction and ameliorated the clinical phenotype. PXT3003 also improved axonal regeneration and remyelination in the murine nerve crush model. Based on these observations in preclinical models, a clinical trial of PTX3003 in CMT1A, a neglected orphan disease, is warranted. If the efficacy of PTX3003 is confirmed, rational polytherapy based on novel combinations of existing non-toxic drugs with pleiotropic effects may represent a promising approach for rapid drug development.
Collapse
|
5
|
Abstract
Three new compounds, taraxacine-A (1), taraxacine-B (2) and taraxafolin (3) together with twenty-five known compounds, which include two beta-carboline alkaloids, two indole alkaloids, two chlorophylls, two flavonoids, one coumarin, two triterpenoids, one monoterpenoid, one ionone, four steroids and eight benzenoids, were isolated and characterized from the fresh aerial parts of Taraxacum formosanum. Structures of new compounds were determined by spectral analysis.
Collapse
Affiliation(s)
- Yann-Lii Leu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.
| | | | | |
Collapse
|
6
|
Mors WB, Nascimento MC, Pereira BM, Pereira NA. Plant natural products active against snake bite--the molecular approach. PHYTOCHEMISTRY 2000; 55:627-642. [PMID: 11130675 DOI: 10.1016/s0031-9422(00)00229-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The article surveys the substances identified in plants reputed to neutralize the effects of snake venoms. Protective activity of many of them against the lethal action of the venom of the jararaca (Bothrops jararaca) snake was confirmed by biological assays. It was shown that all belong to chemical classes capable of interacting with macromolecular targets--receptors and enzymes. In a few cases it has been shown that exogenous natural micromolecules can mimic the biological activity of endogenous macromolecules. From the evidence presented, it can be inferred that micromolecules which neutralize the action of snake venoms mechanistically replace endogenous antitoxic serum proteins with venom neutralizing capacity such as produced by some animals.
Collapse
Affiliation(s)
- W B Mors
- Núcleo de Pesquisas de Produtos Naturais, Centro de Ciências de Saúde, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|