1
|
Szewczyk AK, Ulutas S, Aktürk T, Al-Hassany L, Börner C, Cernigliaro F, Kodounis M, Lo Cascio S, Mikolajek D, Onan D, Ragaglini C, Ratti S, Rivera-Mancilla E, Tsanoula S, Villino R, Messlinger K, Maassen Van Den Brink A, de Vries T. Prolactin and oxytocin: potential targets for migraine treatment. J Headache Pain 2023; 24:31. [PMID: 36967387 PMCID: PMC10041814 DOI: 10.1186/s10194-023-01557-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/28/2023] [Indexed: 03/28/2023] Open
Abstract
Migraine is a severe neurovascular disorder of which the pathophysiology is not yet fully understood. Besides the role of inflammatory mediators that interact with the trigeminovascular system, cyclic fluctuations in sex steroid hormones are involved in the sex dimorphism of migraine attacks. In addition, the pituitary-derived hormone prolactin and the hypothalamic neuropeptide oxytocin have been reported to play a modulating role in migraine and contribute to its sex-dependent differences. The current narrative review explores the relationship between these two hormones and the pathophysiology of migraine. We describe the physiological role of prolactin and oxytocin, its relationship to migraine and pain, and potential therapies targeting these hormones or their receptors.In summary, oxytocin and prolactin are involved in nociception in opposite ways. Both operate at peripheral and central levels, however, prolactin has a pronociceptive effect, while oxytocin appears to have an antinociceptive effect. Therefore, migraine treatment targeting prolactin should aim to block its effects using prolactin receptor antagonists or monoclonal antibodies specifically acting at migraine-pain related structures. This action should be local in order to avoid a decrease in prolactin levels throughout the body and associated adverse effects. In contrast, treatment targeting oxytocin should enhance its signalling and antinociceptive effects, for example using intranasal administration of oxytocin, or possibly other oxytocin receptor agonists. Interestingly, the prolactin receptor and oxytocin receptor are co-localized with estrogen receptors as well as calcitonin gene-related peptide and its receptor, providing a positive perspective on the possibilities for an adequate pharmacological treatment of these nociceptive pathways. Nevertheless, many questions remain to be answered. More particularly, there is insufficient data on the role of sex hormones in men and the correct dosing according to sex differences, hormonal changes and comorbidities. The above remains a major challenge for future development.
Collapse
Affiliation(s)
- Anna K Szewczyk
- Doctoral School, Medical University of Lublin, Lublin, Poland
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Samiye Ulutas
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Tülin Aktürk
- Department of Neurology, Kartal Dr. Lutfi Kirdar Research and Training Hospital, Istanbul, Turkey
| | - Linda Al-Hassany
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Corinna Börner
- Department of Pediatrics - Dr. von Hauner Children's Hospital, LMU Hospital, Division of Pediatric Neurology and Developmental Medicine, Ludwig-Maximilians Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- LMU Center for Children with Medical Complexity - iSPZ Hauner, Ludwig-Maximilians-Universität München, Lindwurmstr. 4, 80337, Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Federica Cernigliaro
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - Michalis Kodounis
- First Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Salvatore Lo Cascio
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro, University of Palermo, 90133, Palermo, Italy
| | - David Mikolajek
- Department of Neurology, City Hospital Ostrava, Ostrava, Czech Republic
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Chiara Ragaglini
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Susanna Ratti
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Eduardo Rivera-Mancilla
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sofia Tsanoula
- Department of Neurology, 401 Military Hospital of Athens, Athens, Greece
| | - Rafael Villino
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antoinette Maassen Van Den Brink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tessa de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Abstract
The neurohypophyseal hormones arginine-vasopressin (AVP) and oxytocin (OT) are produced in the neurons of the hypothalamic supraoptic (SON) and paraventricular (PVN) nucleus and in the much smaller cells of the suprachiasmatic (SCN) nucleus. The SON is the main source of plasma AVP. Part of the AVP and OT neurons of the PVN join the hypothalamo-neurohypophyseal tract, whereas others send projections to the median eminence or various brain areas, where AVP and OT are involved in a number of central functions as neurotransmitters/neuromodulators. AVP and OT from the PVN can also regulate via the autonomous innervation endocrine glands and fat tissue. OT is produced for a major part in the PVN but some OT neurons are present in the SON. Moreover, both AVP and OT containing neurons are observed in the "accessory nuclei", i.e. islands situated between the SON and PVN. The SCN is the biological clock, and the number of AVP expressing neurons in the SCN shows both diurnal and seasonal rhythms. In addition to these hypothalamic areas, AVP and OT may be found to a lesser extent in some other brain areas, such as the bed nucleus of the stria terminalis, diagonal band of Broca, nucleus basalis of Meynert, lateral septal nucleus, globus pallidus and the anterior amygdaloid nucleus, as well as in the peripheral tissues. The AVP and OT containing neurons should not be considered as one system. Prominent functional differences exist between the different nuclei. The heterogeneity also becomes clear from the marked differences in the neurohypophyseal peptides containing neurons of the SON, PVN and SCN during aging, and in the most prevalent age-related neurodegenerative diseases, i.e. Alzheimer's disease (AD). For those reasons, we will discuss the SON, PVN and SCN separately.
Collapse
Affiliation(s)
- Tatjana A Ishunina
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ, Amsterdam, The Netherlands
| | | |
Collapse
|