1
|
Velikova V, Tsonev T, Tattini M, Arena C, Krumova S, Koleva D, Peeva V, Stojchev S, Todinova S, Izzo LG, Brunetti C, Stefanova M, Taneva S, Loreto F. Physiological and structural adjustments of two ecotypes of Platanus orientalis L. from different habitats in response to drought and re-watering. CONSERVATION PHYSIOLOGY 2018; 6:coy073. [PMID: 30591840 PMCID: PMC6301291 DOI: 10.1093/conphys/coy073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/02/2018] [Accepted: 11/27/2018] [Indexed: 05/23/2023]
Abstract
Platanus orientalis covers a very fragmented area in Europe and, at the edge of its natural distribution, is considered a relic endangered species near extinction. In our study, it was hypothesized that individuals from the edge of the habitat, with stronger climate constrains (drier and warmer environment, Italy, IT ecotype), developed different mechanisms of adaptation than those growing under optimal conditions at the center of the habitat (more humid and colder environment, Bulgaria, BG ecotype). Indeed, the two P. orientalis ecotypes displayed physiological, structural and functional differences already under control (unstressed) conditions. Adaptation to a dry environment stimulated constitutive isoprene emission, determined active stomatal behavior, and modified chloroplast ultrastructure, ultimately allowing more effective use of absorbed light energy for photochemistry. When exposed to short-term acute drought stress, IT plants showed active stomatal control that enhanced instantaneous water use efficiency, and stimulation of isoprene emission that sustained photochemistry and reduced oxidative damages to membranes, as compared to BG plants. None of the P. orientalis ecotypes recovered completely from drought stress after re-watering, confirming the sensitivity of this mesophyte to drought. Nevertheless, the IT ecotype showed less damage and better stability at the level of chloroplast membrane parameters when compared to the BG ecotype, which we interpret as possible adaptation to hostile environments and improved capacity to cope with future, likely more recurrent, drought stress.
Collapse
Affiliation(s)
- Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, Sofia, Bulgaria
| | - Tsonko Tsonev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection, Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, Naples, Italy
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | | | - Violeta Peeva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, Sofia, Bulgaria
| | - Svetoslav Stojchev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, Portici, Italy
| | - Cecilia Brunetti
- Department of Biology, Agriculture and Food Sciences, Trees and Timber Institute, The National Research Council of Italy (CNR), Sesto Fiorentino (Florence), Italy
| | | | - Stefka Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, Bulgaria
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, The National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
3
|
Hasni I, Hamdani S, Carpentier R. Destabilization of the Oxygen Evolving Complex of Photosystem II by Al3+. Photochem Photobiol 2013; 89:1135-42. [DOI: 10.1111/php.12116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/11/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Imed Hasni
- Groupe de Recherche en Biologie Végétale (GRBV); Département de chimie; biochimie et physique; Université du Québec à Trois-Rivières; Trois-Rivières; QC; Canada
| | - Saber Hamdani
- Groupe de Recherche en Biologie Végétale (GRBV); Département de chimie; biochimie et physique; Université du Québec à Trois-Rivières; Trois-Rivières; QC; Canada
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale (GRBV); Département de chimie; biochimie et physique; Université du Québec à Trois-Rivières; Trois-Rivières; QC; Canada
| |
Collapse
|
4
|
Velikova V, Várkonyi Z, Szabó M, Maslenkova L, Nogues I, Kovács L, Peeva V, Busheva M, Garab G, Sharkey TD, Loreto F. Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. PLANT PHYSIOLOGY 2011; 157:905-16. [PMID: 21807886 PMCID: PMC3192565 DOI: 10.1104/pp.111.182519] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/28/2011] [Indexed: 05/19/2023]
Abstract
Three biophysical approaches were used to get insight into increased thermostability of thylakoid membranes in isoprene-emittingplants.Arabidopsis (Arabidopsis thaliana) plants genetically modified to make isoprene and Platanus orientalis leaves, in which isoprene emission was chemically inhibited, were used. First, in the circular dichroism spectrum the transition temperature of the main band at 694 nm was higher in the presence of isoprene, indicating that the heat stability of chiral macrodomains of chloroplast membranes, and specifically the stability of ordered arrays of light-harvesting complex II-photosystem II in the stacked region of the thylakoid grana, was improved in the presence of isoprene. Second, the decay of electrochromic absorbance changes resulting from the electric field component of the proton motive force (ΔA₅₁₅) was evaluated following single-turnover saturating flashes. The decay of ΔA₅₁₅ was faster in the absence of isoprene when leaves of Arabidopsis and Platanus were exposed to high temperature, indicating that isoprene protects the thylakoid membranes against leakiness at elevated temperature. Finally, thermoluminescence measurements revealed that S₂Q(B)⁻ charge recombination was shifted to higher temperature in Arabidopsis and Platanus plants in the presence of isoprene, indicating higher activation energy for S₂Q(B)⁻ redox pair, which enables isoprene-emitting plants to perform efficient primary photochemistry of photosystem II even at higher temperatures. The data provide biophysical evidence that isoprene improves the integrity and functionality of the thylakoid membranes at high temperature. These results contribute to our understanding of isoprene mechanism of action in plant protection against environmental stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francesco Loreto
- Institute of Plant Physiology and Genetics (V.V., L.M., V.P.) and Institute of Biophysics and Biomedical Engineering (M.B.), Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, 6726 Szeged, Hungary (Z.V., M.S., L.K., G.G.); Institute of Agroenvironmental and Forest Biology, National Research Council, 00015 Monterotondo, Rome, Italy (I.N.); Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 (T.D.S.); Institute for Plant Protection, National Research Council, 50019 Sesto Fiorentino, Florence, Italy (F.L.)
| |
Collapse
|
5
|
Djilianov D, Ivanov S, Moyankova D, Miteva L, Kirova E, Alexieva V, Joudi M, Peshev D, Van den Ende W. Sugar ratios, glutathione redox status and phenols in the resurrection species Haberlea rhodopensis and the closely related non-resurrection species Chirita eberhardtii. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:767-76. [PMID: 21815981 DOI: 10.1111/j.1438-8677.2010.00436.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Because of their unique tolerance to desiccation, the so-called resurrection plants can be considered as excellent models for extensive research on plant reactions to environmental stresses. The vegetative tissues of these species are able to withstand long dry periods and to recover very rapidly upon re-watering. This study follows the dynamics of key components involved in leaf tissue antioxidant systems under desiccation in the resurrection plant Haberlea rhodopensis and the related non-resurrection species Chirita eberhardtii. In H. rhodopensis these parameters were also followed during recovery after full drying. A well-defined test system was developed to characterise the different responses of the two species under drought stress. Results show that levels of H₂O₂ decreased significantly both in H. rhodopensis and C. eberhardtii, but that accumulation of malondialdehyde was much more pronounced in the desiccation-tolerant H. rhodopensis than in the non-resurrection C. eberhardtii. A putative protective role could be attributed to accumulation of total phenols in H. rhodopensis during the late stages of drying. The total glutathione concentration and GSSG/GSH ratio increased upon complete dehydration of H. rhodopensis. Our data on soluble sugars suggest that sugar ratios might be important for plant desiccation tolerance. An array of different adaptations could thus be responsible for the resurrection phenotype of H. rhodopensis.
Collapse
Affiliation(s)
- D Djilianov
- Abiotic Stress Group, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Georgieva K, Szigeti Z, Sarvari E, Gaspar L, Maslenkova L, Peeva V, Peli E, Tuba Z. Photosynthetic activity of homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and rehydration. PLANTA 2007; 225:955-64. [PMID: 16983535 DOI: 10.1007/s00425-006-0396-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 08/22/2006] [Indexed: 05/11/2023]
Abstract
The functional state of the photosynthetic apparatus of flowering homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and subsequent rehydration was investigated in order to characterize some of the mechanisms by which resurrection plants survive drought stress. The changes in the CO2 assimilation rate, chlorophyll fluorescence parameters, thermoluminescence, fluorescence imaging and electrophoretic characteristics of the chloroplast proteins were measured in control, moderately dehydrated (50% water content), desiccated (5% water content) and rehydrated plants. During the first phase of desiccation the net CO2 assimilation decline was influenced by stomatal closure. Further lowering of net CO2 assimilation was caused by both the decrease in stomatal conductance and in the photochemical activity of photosystem II. Severe dehydration caused inhibition of quantum yield of PSII electron transport, disappearance of thermoluminescence B band and mainly charge recombination related to S2QA- takes place. The blue and green fluorescence emission in desiccated leaves strongly increased. It could be suggested that unchanged chlorophyll content and amounts of chlorophyll-proteins, reversible modifications in PSII electron transport and enhanced probability for non-radiative energy dissipation as well as increased polyphenolic synthesis during desiccation of Haberlea contribute to drought resistance and fast recovery after rehydration.
Collapse
Affiliation(s)
- Katya Georgieva
- Acad. M. Popov Institute of Plant Physiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia 1113, Bulgaria.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Alpert P. Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? ACTA ACUST UNITED AC 2006; 209:1575-84. [PMID: 16621938 DOI: 10.1242/jeb.02179] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drying to equilibrium with the air kills nearly all animals and flowering plants, including livestock and crops. This makes drought a key ecological problem for terrestrial life and a major cause of human famine. However, the ability to tolerate complete desiccation is widespread in organisms that are either <5 mm long or found mainly where desiccation-sensitive organisms are scarce. This suggests that there is a trade-off between desiccation tolerance and growth. Recent molecular and biochemical research shows that organisms tolerate desiccation through a set of mechanisms, including sugars that replace water and form glasses, proteins that stabilize macromolecules and membranes, and anti-oxidants that counter damage by reactive oxygen species. These protections are often induced by drying, and some of the genes involved may be homologous in microbes, plants and animals. Understanding how mechanisms of desiccation tolerance may constrain growth might show how to undo the constraint in some economically important macroorganisms and elucidate the much-studied but elusive relationship between tolerance of stress and productivity.
Collapse
Affiliation(s)
- Peter Alpert
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
9
|
Zeinalov Y. A brief history of the investigations on photosynthesis in Bulgaria. PHOTOSYNTHESIS RESEARCH 2006; 88:195-204. [PMID: 16761181 DOI: 10.1007/s11120-006-9056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 03/01/2006] [Indexed: 05/10/2023]
Abstract
Investigations on photosynthesis in Bulgaria started in 1941 with the doctoral thesis of Kyrill Popov (University of Münster, Germany). In 1965, at the Institute of Plant Physiology, in Sofia, Kyrill Popov guided the establishment of a special group of researchers on the biochemistry, biophysics and physiology of photosynthesis. In this paper, a brief description of research in photosynthesis in Bulgaria is presented.
Collapse
Affiliation(s)
- Yuzeir Zeinalov
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, Sofia, 1113, Bulgaria.
| |
Collapse
|
10
|
Georgieva K, Maslenkova L, Peeva V, Markovska Y, Stefanov D, Tuba Z. Comparative study on the changes in photosynthetic activity of the homoiochlorophyllous desiccation-tolerant Haberlea rhodopensis and desiccation-sensitive spinach leaves during desiccation and rehydration. PHOTOSYNTHESIS RESEARCH 2005; 85:191-203. [PMID: 16075320 DOI: 10.1007/s11120-005-2440-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 02/14/2005] [Indexed: 05/03/2023]
Abstract
The functional peculiarities and responses of the photosynthetic system in the flowering homoiochlorophyllous desiccation-tolerant (HDT) Haberlea rhodopensis and the non-desiccation-tolerant spinach were compared during desiccation and rehydration. Increasing rate of water loss clearly modifies the kinetic parameters of fluorescence induction, thermoluminescence emission, far-red induced P700 oxidation and oxygen evolution in the leaves of both species. The values of these parameters returned nearly to the control level after 24 h rehydration only of the leaves of HDT plant. PS II was converted in a non-functional state in desiccated spinach in accordance with the changes in membrane permeability, malondialdehyde, proline and H(2)O(2) contents. Moreover, our data showed a strong reduction of the total number of PS II centers in Haberlea without any changes in the energetics of the charge recombination. We consider this observation, together with the previously reported unusually high temperature of B-band (S(2)Q(B)-) emission of Haberlea to reflect some specific adaptive characteristics of the photosynthetic system. As far as we know this is the first time when such adaptive characteristics and mechanism of the photosynthetic system of a flowering HDT higher plant is described. These features of Haberlea can explain the fast recovery of its photosynthesis after desiccation, which enable this HDT plant to rapidly take advantage of frequent changes in water availability.
Collapse
Affiliation(s)
- Katya Georgieva
- Acad. M. Popov Institute of Plant Physiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | | | | | |
Collapse
|