1
|
Qiu Y, Li Z, Köhler C. Ancestral duplication of MADS-box genes in land plants empowered the functional divergence between sporophytes and gametophytes. THE NEW PHYTOLOGIST 2024; 244:358-363. [PMID: 39149858 DOI: 10.1111/nph.20065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Affiliation(s)
- Yichun Qiu
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Claudia Köhler
- Department of Plant Reproductive Biology and Epigenetics, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Centre for Plant Biology, Uppsala, 75007, Sweden
| |
Collapse
|
2
|
Thangavel G, Nayar S. A Survey of MIKC Type MADS-Box Genes in Non-seed Plants: Algae, Bryophytes, Lycophytes and Ferns. FRONTIERS IN PLANT SCIENCE 2018; 9:510. [PMID: 29720991 PMCID: PMC5915566 DOI: 10.3389/fpls.2018.00510] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/03/2018] [Indexed: 05/22/2023]
Abstract
MADS box transcription factors have been studied extensively in flowering plants but remain less studied in non-seed plants. MADS box is one such example of a gene which is prevalent across many classes of plants ranging from chlorophyta to embryophyta as well as fungi and animals. MADS box transcription factors are of two types, Type I and Type II. Type II transcription factors (TF) that consist of a MADS domain, I region, K domain, and C terminal domain are discussed in this review. The Type II/ MIKC class is widespread across charophytes and all major lineages of land plants but unknown in green and red algae. These transcription factors have been implicated in floral development in seed plants and thus the question arises, "What is their role in non-seed plants?" From the studies reviewed here it can be gathered that unlike seed plants, MIKCC genes in non-seed plants have roles in both gametophytic and sporophytic generations and contribute to the development of both vegetative and reproductive structures. On the other hand as previously observed in seed plants, MIKC* genes of non-seed plants have a conserved role during gametophyte development. With respect to evolution of MIKC genes in non-seed plants, the number of common ancestors is probably very few at each branch. The expansion of this gene family in seed plants and increased plant complexity seem to be correlated. As gradually the genomes of non-seed plants are becoming available it is worthwhile to gather the existing information about MADS box genes in non-seed plants. This review highlights various MIKC MADS box genes discovered so far in non-seed plants, their possible roles and an insight into their evolution.
Collapse
|
3
|
Lin PC, Lu CW, Shen BN, Lee GZ, Bowman JL, Arteaga-Vazquez MA, Liu LYD, Hong SF, Lo CF, Su GM, Kohchi T, Ishizaki K, Zachgo S, Althoff F, Takenaka M, Yamato KT, Lin SS. Identification of miRNAs and Their Targets in the Liverwort Marchantia polymorpha by Integrating RNA-Seq and Degradome Analyses. PLANT & CELL PHYSIOLOGY 2016; 57:339-58. [PMID: 26861787 PMCID: PMC4788410 DOI: 10.1093/pcp/pcw020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/22/2015] [Indexed: 05/04/2023]
Abstract
Bryophytes (liverworts, hornworts and mosses) comprise the three earliest diverging lineages of land plants (embryophytes). Marchantia polymorpha, a complex thalloid Marchantiopsida liverwort that has been developed into a model genetic system, occupies a key phylogenetic position. Therefore, M. polymorpha is useful in studies aiming to elucidate the evolution of gene regulation mechanisms in plants. In this study, we used computational, transcriptomic, small RNA and degradome analyses to characterize microRNA (miRNA)-mediated pathways of gene regulation in M. polymorpha. The data have been integrated into the open access ContigViews-miRNA platform for further reference. In addition to core components of the miRNA pathway, 129 unique miRNA sequences, 11 of which could be classified into seven miRNA families that are conserved in embryophytes (miR166a, miR390, miR529c, miR171-3p, miR408a, miR160 and miR319a), were identified. A combination of computational and degradome analyses allowed us to identify and experimentally validate 249 targets. In some cases, the target genes are orthologous to those of other embryophytes, but in other cases, the conserved miRNAs target either paralogs or members of different gene families. In addition, the newly discovered Mpo-miR11707.1 and Mpo-miR11707.2 are generated from a common precursor and target MpARGONAUTE1 (LW1759). Two other newly discovered miRNAs, Mpo-miR11687.1 and Mpo-miR11681.1, target the MADS-box transcription factors MpMADS1 and MpMADS2, respectively. Interestingly, one of the pentatricopeptide repeat (PPR) gene family members, MpPPR_66 (LW9825), the protein products of which are generally involved in various steps of RNA metabolism, has a long stem-loop transcript that can generate Mpo-miR11692.1 to autoregulate MpPPR_66 (LW9825) mRNA. This study provides a foundation for further investigations of the RNA-mediated silencing mechanism in M. polymorpha as well as of the evolution of this gene silencing pathway in embryophytes.
Collapse
Affiliation(s)
- Pin-Chun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106 These authors contributed equally to this work
| | - Chia-Wei Lu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106 These authors contributed equally to this work
| | - Bing-Nan Shen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Guan-Zong Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Mario A Arteaga-Vazquez
- Instituto de Biotecnologia y Ecologia Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa Veracruz, Mexico
| | - Li-Yu Daisy Liu
- Department of Agronomy, National Taiwan University, 1 Sec. 4, Roosevelt Rd. Taipei, Taiwan 106
| | - Syuan-Fei Hong
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Taiwan 701
| | - Gong-Min Su
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | | | - Sabine Zachgo
- University of Osnabrück, Botany Department, D-49076 Osnabrück, Germany
| | - Felix Althoff
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Mizuki Takenaka
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kinki University, Nishimitani, Kinokawa, Wakayama, 649-6493 Japan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106 Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 115 Center of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| |
Collapse
|
4
|
Barker EI, Ashton NW. A parsimonious model of lineage-specific expansion of MADS-box genes in Physcomitrella patens. PLANT CELL REPORTS 2013; 32:1161-77. [PMID: 23525745 DOI: 10.1007/s00299-013-1411-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/01/2013] [Indexed: 05/24/2023]
Abstract
The MADS-box gene family expanded in the lineage leading to the moss, Physcomitrella patens , mainly as a result of polyploidisations and/or large-scale segmental duplication events and to a lesser extent by tandem duplications. Plant MADS-box genes comprise a large family best known for the roles of type II MIKC (C) genes in floral organogenesis, but also including type II MIKC* genes, some of which have been implicated in male gametophytic development, and type I genes, a few of which are involved in ontogeny of female gametophytes, seeds and embryos. Genome-wide analyses of the MADS-box family in angiosperms have revealed numeric predominance of type I and MIKC (C) genes and cross-species phylogenetic clustering of the Mα, Mβ and Mγ subtypes of type I genes and of 12 major subgroups of MIKC (C) genes. The genome sequence of Physcomitrella patens has facilitated investigation of its full complement of 26 MADS-box genes, including 6 MIKC (C) genes, 11 MIKC* genes, seven type I genes and two pseudogenes. A much higher degree of similarity in sequence and architecture within the MIKC (C) and MIKC* gene subtypes exists in Physcomitrella than in Arabidopsis. Furthermore, MADS-box and K-box sequence is highly conserved between the MIKC (C) and MIKC* subgroups in Physcomitrella. Nine MIKC* genes and two MIKC (C) genes are located in pairs or triplets on individual DNA scaffolds. Phylogenetic gene clustering, gene architectures and gene linkages (directly determined from examination of the genome sequence) underpin a parsimonious model of two tandem duplications and three segmental duplication events, which can account for lineage-specific expansion of the MADS-box gene family in Physcomitrella from 4 members to 26. Two of these segmental duplication events may be indicative of polyploidisations, one of which has been postulated previously.
Collapse
Affiliation(s)
- E I Barker
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
| | | |
Collapse
|
5
|
Liu Y, Cui S, Wu F, Yan S, Lin X, Du X, Chong K, Schilling S, Theißen G, Meng Z. Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation. THE PLANT CELL 2013; 25:1288-303. [PMID: 23613199 PMCID: PMC3663268 DOI: 10.1105/tpc.113.110049] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 05/19/2023]
Abstract
There are two groups of MADS intervening keratin-like and C-terminal (MIKC)-type MADS box genes, MIKC(C) type and MIKC* type. In seed plants, the MIKC(C) type shows considerable diversity, but the MIKC* type has only two subgroups, P- and S-clade, which show conserved expression in the gametophyte. To examine the functional conservation of MIKC*-type genes, we characterized all three rice (Oryza sativa) MIKC*-type genes. All three genes are specifically expressed late in pollen development. The single knockdown or knockout lines, respectively, of the S-clade MADS62 and MADS63 did not show a mutant phenotype, but lines in which both S-clade genes were affected showed severe defects in pollen maturation and germination, as did knockdown lines of MADS68, the only P-clade gene in rice. The rice MIKC*-type proteins form strong heterodimeric complexes solely with partners from the other subclade; these complexes specifically bind to N10-type C-A-rich-G-boxes in vitro and regulate downstream gene expression by binding to N10-type promoter motifs. The rice MIKC* genes have a much lower degree of functional redundancy than the Arabidopsis thaliana MIKC* genes. Nevertheless, our data indicate that the function of heterodimeric MIKC*-type protein complexes in pollen development has been conserved since the divergence of monocots and eudicots, roughly 150 million years ago.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaojie Cui
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuo Yan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelei Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqiu Du
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Susanne Schilling
- Department of Genetics, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Zheng Meng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Address correspondence to
| |
Collapse
|
6
|
Kwantes M, Liebsch D, Verelst W. How MIKC* MADS-box genes originated and evidence for their conserved function throughout the evolution of vascular plant gametophytes. Mol Biol Evol 2011; 29:293-302. [PMID: 21813465 DOI: 10.1093/molbev/msr200] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Land plants have a remarkable life cycle that alternates between a diploid sporophytic and a haploid gametophytic generation, both of which are multicellular and changed drastically during evolution. Classical MIKC MADS-domain (MIKCC) transcription factors are famous for their role in sporophytic development and are considered crucial for its evolution. About the regulation of gametophyte development, in contrast, little is known. Recent evidence indicated that the closely related MIKC* MADS-domain proteins are important for the functioning of the Arabidopsis thaliana male gametophyte (pollen). Furthermore, also in bryophytes, several MIKC* genes are expressed in the haploid generation. Therefore, that MIKC* genes have a similar role in the evolution of the gametophytic phase as MIKCC genes have in the sporophyte is a tempting hypothesis. To get a comprehensive view of the involvement of MIKC* genes in gametophyte evolution, we isolated them from a broad variety of vascular plants, including the lycophyte Selaginella moellendorffii, the fern Ceratopteris richardii, and representatives of several flowering plant lineages. Phylogenetic analysis revealed an extraordinary conservation not found in MIKCC genes. Moreover, expression and interaction studies suggest that a conserved and characteristic network operates in the gametophytes of all tested model organisms. Additionally, we found that MIKC* genes probably evolved from an ancestral MIKCC-like gene by a duplication in the Keratin-like region. We propose that this event facilitated the independent evolution of MIKC* and MIKCC protein networks and argue that whereas MIKCC genes diversified and attained new functions, MIKC* genes retained a conserved role in the gametophyte during land plant evolution.
Collapse
Affiliation(s)
- Michiel Kwantes
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | | | | |
Collapse
|
7
|
Evolution of the Cinnamyl/Sinapyl Alcohol Dehydrogenase (CAD/SAD) gene family: the emergence of real lignin is associated with the origin of Bona Fide CAD. J Mol Evol 2010; 71:202-18. [PMID: 20721545 DOI: 10.1007/s00239-010-9378-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
Lignin plays a vital role in plant adaptation to terrestrial environments. The cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and might have contributed to the lignin diversity in plants. To investigate the evolutionary history and functional differentiation of the CAD gene family, we made a comprehensive evolutionary analysis of this gene family from 52 species, including bacteria, early eukaryotes and green plants. The phylogenetic analysis, together with gene structure and function, indicates that all members of land plants, except two of moss, could be divided into three classes. Members of Class I (bona fide CAD), generally accepted as the primary genes involved in the monolignol biosynthesis, are all from vascular plants, and form a robustly supported monophyletic group with the lycophyte CADs at the basal position. This class is also conserved in the predicted three-dimensional structure and the residues constituting the substrate-binding pocket of the proteins. Given that Selaginella has real lignin, the above evidence strongly suggests that the earliest occurrence of the bona fide CAD in the lycophyte could be directly correlated with the origin of lignin. Class II comprises members more similar to the aspen sinapyl alcohol dehydrogenase gene, and includes three groups corresponding to lycophyte, gymnosperm, and angiosperm. Class III is conserved in land plants. The three classes differ in patterns of evolution and expression, implying that functional divergence has occurred among them. Our study also supports the hypothesis of convergent evolution of lignin biosynthesis between red algae and vascular plants.
Collapse
|
8
|
Zobell O, Faigl W, Saedler H, Münster T. MIKC* MADS-box proteins: conserved regulators of the gametophytic generation of land plants. Mol Biol Evol 2010; 27:1201-11. [PMID: 20080864 DOI: 10.1093/molbev/msq005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Land plants (embryophytes) are characterized by an alternation of two generations, the haploid gametophyte and the diploid sporophyte. The development of the small and simple male gametophyte of the flowering plant Arabidopsis (Arabidopsis thaliana) critically depends on the action of five MIKC* group MCM1-AGAMOUS-DEFICIENS-SRF-box (MADS-box) proteins. In this study, these MIKC* MADS-box genes were isolated from land plants with relatively large and complex gametophyte bodies, namely the bryophytes. We found that although the gene family expanded in the mosses Sphagnum subsecundum, Physcomitrella patens, and Funaria hygrometrica, only a single homologue, Marchantia polymorpha MADS-box gene 1 (MpMADS1), has been retained in the liverwort M. polymorpha. Liverworts are the earliest diverging land plants, and so a comparison of MpMADS1 with its angiosperm homologues addresses the molecular evolution of an embryophyte-specific transcription factor over the widest phylogenetic distance. MpMADS1 was found to form a homodimeric DNA-binding complex, which is in contrast to the Arabidopsis proteins that are functional only as heterodimeric complexes. The M. polymorpha homodimer, nevertheless, recognizes the same DNA sequences as its angiosperm counterparts and can functionally replace endogenous MIKC* complexes to a significant extent when heterologously expressed in Arabidopsis pollen. The 11 MIKC* homologues from the moss F. hygrometrica are highly and almost exclusively expressed in the gametophytic generation. Taken together, these findings suggest that MIKC* MADS-box proteins have largely preserved molecular roles in the gametophytic generation of land plants.
Collapse
Affiliation(s)
- Oliver Zobell
- Department of Molecular Plant Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | | | | | | |
Collapse
|
9
|
Richardt S, Timmerhaus G, Lang D, Qudeimat E, Corrêa LGG, Reski R, Rensing SA, Frank W. Microarray analysis of the moss Physcomitrella patens reveals evolutionarily conserved transcriptional regulation of salt stress and abscisic acid signalling. PLANT MOLECULAR BIOLOGY 2010; 72:27-45. [PMID: 19806323 DOI: 10.1007/s11103-009-9550-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 09/03/2009] [Indexed: 05/03/2023]
Abstract
Regulatory networks of salt stress and abscisic acid (ABA) responses have previously been analyzed in seed plants. Here, we report microarray expression profiles of 439 genes encoding transcription-associated proteins (TAPs) in response to salt stress and ABA in the salt-tolerant moss Physcomitrella patens. Fourteen and 56 TAP genes were differentially expressed within 60 min of NaCl and ABA treatment, respectively, indicating that these responses are regulated at the transcriptional level. Overlapping expression profiles, as well as the up-regulation of ABA biosynthesis genes, suggest that ABA mediates the salt stress responses in P. patens. Comparison to public gene expression data of Arabidopsis thaliana and phylogenetic analyses suggest that the role of DREB-like, Dof, and bHLH TAPs in salt stress responses have been conserved during embryophyte evolution, and that the function of ABI3-like, bZIP, HAP3, and CO-like TAPs in seed development and flowering emerged from pre-existing ABA and light signalling pathways.
Collapse
Affiliation(s)
- Sandra Richardt
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lang D, Zimmer AD, Rensing SA, Reski R. Exploring plant biodiversity: the Physcomitrella genome and beyond. TRENDS IN PLANT SCIENCE 2008; 13:542-9. [PMID: 18762443 DOI: 10.1016/j.tplants.2008.07.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 05/18/2023]
Abstract
For decades, plant molecular biology has focused on only a few angiosperm species. Recently, the approximately 500mega base pairs (Mb) of the haploid Physcomitrella patens genome were sequenced and annotated. Mosses such as P. patens occupy a key evolutionary position halfway between green algae and flowering plants. This draft genome, in comparison to existing genome data from other plants, allows evolutionary insights into the conquest of land by plants and the molecular biodiversity that land plants exhibit. As a model organism, P. patens provides a well-developed molecular toolbox, including efficient gene targeting in combination with the morphologically simple moss tissues. We describe current as well as future tools for P. patens research and the prospects they offer for plant research in general.
Collapse
Affiliation(s)
- Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
11
|
Singer SD, Krogan NT, Ashton NW. Clues about the ancestral roles of plant MADS-box genes from a functional analysis of moss homologues. PLANT CELL REPORTS 2007; 26:1155-69. [PMID: 17390136 DOI: 10.1007/s00299-007-0312-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 01/22/2007] [Accepted: 01/22/2007] [Indexed: 05/14/2023]
Abstract
Classic MIKC-type MADS-box genes MIKC(c) genes) are indispensable elements in the genetic programming of pattern formation, including the segmental organisation of angiosperm flowers, in seed plants. Since little is known about the functions of MIKC(c) genes in non-seed plants, a functional analysis of moss MIKC(c) homologues was performed using the genetically amenable, simple model plant, Physcomitrella patens. Expression of moss homologues was knocked down using an antisense RNA approach or abolished by generating transformants with gene knockouts. The knocked down ("antisense") transformants displayed a multifaceted mutant phenotype comprising delayed gametangia formation, diminished sporophyte yield and, in the most extremely affected cases, abnormal sporophyte development and altered leaf morphogenesis. Knocked out transformants were phenotypically normal. Analysis of in situ MIKC(c) gene expression using transgenic strains containing MIKC(c) promoter-GUS fusions showed that these genes are generally expressed ubiquitously in vegetative and reproductive tissues. We conclude that MIKC(c) genes play significant roles in morphogenetic programming of the moss. Functional redundancy characterises some members of the gene group. Our findings provide clues concerning the ancestral roles of some MIKC(c) genes that may be represented in the genomes of diverse extant plant taxa.
Collapse
Affiliation(s)
- S D Singer
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | | | | |
Collapse
|
12
|
Richardt S, Lang D, Reski R, Frank W, Rensing SA. PlanTAPDB, a phylogeny-based resource of plant transcription-associated proteins. PLANT PHYSIOLOGY 2007; 143:1452-66. [PMID: 17337525 PMCID: PMC1851845 DOI: 10.1104/pp.107.095760] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Diversification of transcription-associated protein (TAP) families during land plant evolution is a key process yielding increased complexity of plant life. Understanding the evolutionary relationships between these genes is crucial to gain insight into plant evolution. We have determined a substantial set of TAPs that are focused on, but not limited to, land plants using PSI-BLAST searches and subsequent filtering and clustering steps. Phylogenies were created in an automated way using a combination of distance and maximum likelihood methods. Comparison of the data to previously published work confirmed their accuracy and usefulness for the majority of gene families. Evidence is presented that the flowering plant apical stem cell regulator WUSCHEL evolved from an ancestral homeobox gene that was already present after the water-to-land transition. The presence of distinct expanded gene families, such as COP1 and HIT in moss, is discussed within the evolutionary backdrop. Comparative analyses revealed that almost all angiosperm transcription factor families were already present in the earliest land plants, whereas many are missing among unicellular algae. A global analysis not only of transcription factors but also of transcriptional regulators and novel putative families is presented. A wealth of data about plant TAP families and all data accrued throughout their automated detection and analysis are made available via the PlanTAPDB Web interface. Evolutionary relationships of these genes are readily accessible to the nonexpert at a mouse-click. Initial analyses of selected gene families revealed that PlanTAPDB can easily be exerted for knowledge discovery.
Collapse
Affiliation(s)
- Sandra Richardt
- Plant Biotechnology, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
13
|
Verelst W, Saedler H, Münster T. MIKC* MADS-protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters. PLANT PHYSIOLOGY 2007; 143:447-60. [PMID: 17071640 PMCID: PMC1761959 DOI: 10.1104/pp.106.089805] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The genome of Arabidopsis (Arabidopsis thaliana) encodes over 100 MADS-domain transcription factors, categorized into five phylogenetic subgroups. Most research efforts have focused on just one of these subgroups (MIKC(c)), whereas the other four remain largely unexplored. Here, we report on five members of the so-called Mdelta or Arabidopsis MIKC* (AtMIKC*) subgroup, which are predominantly expressed during the late stages of pollen development. Very few MADS-box genes function in mature pollen, and from this perspective, the AtMIKC* genes are therefore highly exceptional. We found that the AtMIKC* proteins are able to form multiple heterodimeric complexes in planta, and that these protein complexes exhibit a for the MADS-family unusual and high DNA binding specificity in vitro. Compared to their occurrence in promoters genome wide, AtMIKC* binding sites are strongly overrepresented in the proximal region of late pollen-specific promoters. By combining our experimental data with in silico genomics and pollen transcriptomics approaches, we identified a considerable number of putative direct target genes of the AtMIKC* transcription factor complexes in pollen, many of which have known or proposed functions in pollen tube growth. The expression of several of these predicted targets is altered in mutant pollen in which all AtMIKC* complexes are affected, and in vitro germination of this mutant pollen is severely impaired. Our data therefore suggest that the AtMIKC* protein complexes play an essential role in transcriptional regulation during late pollen development.
Collapse
Affiliation(s)
- Wim Verelst
- Department of Molecular Plant Genetics, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.
| | | | | |
Collapse
|