1
|
do Nascimento Salvador PC, Dal Pupo J, De Lucas RD, de Aguiar RA, Arins FB, Guglielmo LG. The V̇o 2 Kinetics of Maximal and Supramaximal Running Exercises in Sprinters and Middle-Distance Runners. J Strength Cond Res 2016; 30:2857-63. [DOI: 10.1519/jsc.0000000000001366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
Capelli C, Rittveger J, Bruseghini P, Calabria E, Tam E. Maximal aerobic power and anaerobic capacity in cycling across the age spectrum in male master athletes. Eur J Appl Physiol 2016; 116:1395-410. [PMID: 27225620 DOI: 10.1007/s00421-016-3396-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/16/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE We analyzed the best performance times of master cycling athletes in the 200-3000 m track competitions to estimate the decay of maximal aerobic power (MAP) and anaerobic capacity (AnS) with aging. METHODS In various decades of age (30-80 years), MAP and AnS were estimated using an iterative procedure as the values that minimize the difference between: (1) the metabolic power ([Formula: see text]) necessary to cover a given distance (d) in the time t and; (2) the maximal metabolic power ([Formula: see text]) maintained at a constant level throughout the competition. RESULTS MAP started decreasing at 45 years of age. Thereafter, it showed an average percent rate of decrease of about 16 % for decade, as previously shown in other classes of master athletes. In addition, AnS seemed to decay by about 11 % every 10 years from the second part of the fifth decade. CONCLUSIONS The decay of MAP occurred in spite of the active lifestyle of the subjects and it may be attributed to the progressive impairment of maximal O2 delivery and/or of peripheral O2 utilization. The loss of AnS might derive from the progressive loss of muscle mass occurring after the fifth decade of life, to the progressive qualitative deterioration of the anaerobic energy yielding pathways or to the lower capacity of MN recruitment during maximal efforts. The proposed approach may be applied to other types of human locomotion of whom the relationship between performance t and [Formula: see text] is known.
Collapse
Affiliation(s)
- C Capelli
- Department of Neurological and Movement Sciences, School of Exercise and Sport Sciences, University of Verona, Verona, Italy. .,Department of Physical Performances, Norwegian School of Sport Sciences, Sognsveien 220, 0806, Oslo, Norway.
| | - J Rittveger
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - P Bruseghini
- Department of Neurological and Movement Sciences, School of Exercise and Sport Sciences, University of Verona, Verona, Italy
| | - E Calabria
- Department of Neurological and Movement Sciences, School of Exercise and Sport Sciences, University of Verona, Verona, Italy
| | - E Tam
- Department of Neurological and Movement Sciences, School of Exercise and Sport Sciences, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Grey TM, Spencer MD, Belfry GR, Kowalchuk JM, Paterson DH, Murias JM. Effects of age and long-term endurance training on VO2 kinetics. Med Sci Sports Exerc 2016; 47:289-98. [PMID: 24870579 DOI: 10.1249/mss.0000000000000398] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study examined the effects of age and training status on the pulmonary oxygen uptake (VO2p) kinetics of untrained and chronically trained young, middle-age, and older groups of men. METHODS Breath-by-breath VO2p and near-infrared spectroscopy-derived muscle deoxygenation ([HHb]) were monitored continuously in young (20-39 yr) trained (YT, n = 8) and untrained (YuT, n = 8), middle-age (40-59 yr) trained (MT, n = 9) and untrained (MuT, n = 9), and older (60-85 yr) trained (OT, n = 9) and untrained (OuT, n = 8) men. On-transient VO2p and [HHb] responses to cycling exercise at 80% of the estimated lactate threshold (three repeats) were modeled as monoexponential. Data were scaled to a relative percentage of the response (0%-100%), the signals time aligned, and the individual [HHb]-to-VO2p ratio was calculated as the average [HHb]/VO2 during the 20- to 120-s period after exercise onset. RESULTS The time constant for the adjustment of phase II pulmonary VO2 (τVO2p) was larger in OuT (42.0 ± 11.3 s) compared with that in YT (17.0 ± 7.5 s), MT (18.1 ± 5.3 s), OT (19.8 ± 5.4 s), YuT (25.7 ± 6.6 s), and MuT (24.4 ± 7.4 s) (P < 0.05). Similarly, the [HHb]/VO2 ratio was larger than 1.0 in OuT (1.30 ± 0.13, P < 0.05) and this value was larger than that observed in YT (1.01 ± 0.07), MT (1.04 ± 0.05), OT (1.04 ± 0.04), YuT (1.05 ± 0.03), and MuT (1.02 ± 0.09) (P < 0.05). CONCLUSIONS This study showed that the slower VO2kinetics typically observed in older individuals can be prevented by long-term endurance training interventions. Although the role of O2 delivery relative to peripheral use cannot be elucidated from the current measures, the absence of age-related slowing of VO2 kinetics seems to be partly related to a preservation of the matching of O2 delivery to O2 utilization in chronically trained older individuals, as suggested by the reduction in the [HHb]/VO2 ratio.
Collapse
Affiliation(s)
- Tyler M Grey
- 1Canadian Centre for Activity and Aging, University of Western Ontario, London, Ontario, CANADA; 2School of Kinesiology, University of Western Ontario, London, Ontario, CANADA; 3Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, CANADA; and 4Faculty of Kinesiology, University of Calgary, Calgary, Alberta, CANADA
| | | | | | | | | | | |
Collapse
|
4
|
de Aguiar RA, Lisbôa FD, Turnes T, Cruz RSDO, Caputo F. The Effects of Different Training Backgrounds on VO2 Responses to All-Out and Supramaximal Constant-Velocity Running Bouts. PLoS One 2015; 10:e0133785. [PMID: 26252001 PMCID: PMC4529077 DOI: 10.1371/journal.pone.0133785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/01/2015] [Indexed: 11/18/2022] Open
Abstract
To investigate the impact of different training backgrounds on pulmonary oxygen uptake (V̇O2) responses during all-out and supramaximal constant-velocity running exercises, nine sprinters (SPRs) and eight endurance runners (ENDs) performed an incremental test for maximal aerobic velocity (MAV) assessment and two supramaximal running exercises (1-min all-out test and constant-velocity exercise). The V̇O2 responses were continuously determined during the tests (K4b2, Cosmed, Italy). A mono-exponential function was used to describe the V̇O2 onset kinetics during constant-velocity test at 110%MAV, while during 1-min all-out test the peak of V̇O2 (V̇O2peak), the time to achieve the V̇O2peak (tV̇O2peak) and the V̇O2 decrease at last of the test was determined to characterize the V̇O2 response. During constant-velocity exercise, ENDs had a faster V̇O2 kinetics than SPRs (12.7 ± 3.0 vs. 19.3 ± 5.6 s; p < 0.001). During the 1-min all-out test, ENDs presented slower tV̇O2peak than SPRs (40.6 ± 6.8 and 28.8 ± 6.4 s, respectively; p = 0.002) and had a similar V̇O2peak relative to the V̇O2max (88 ± 8 and 83 ± 6%, respectively; p = 0.157). Finally, SPRs was the only group that presented a V̇O2 decrease in the last half of the test (-1.8 ± 2.3 and 3.5 ± 2.3 ml.kg-1.min-1, respectively; p < 0.001). In summary, SPRs have a faster V̇O2 response when maximum intensity is required and a high maximum intensity during all-out running exercise seems to lead to a higher decrease in V̇O2 in the last part of the exercise.
Collapse
Affiliation(s)
- Rafael Alves de Aguiar
- Human Performance Research Group, Center for Health and Sport Science, Santa Catarina State University, Florianópolis, Santa Catarina State, Brazil
| | - Felipe Domingos Lisbôa
- Human Performance Research Group, Center for Health and Sport Science, Santa Catarina State University, Florianópolis, Santa Catarina State, Brazil
| | - Tiago Turnes
- Human Performance Research Group, Center for Health and Sport Science, Santa Catarina State University, Florianópolis, Santa Catarina State, Brazil
| | - Rogério Santos de Oliveira Cruz
- Human Performance Research Group, Center for Health and Sport Science, Santa Catarina State University, Florianópolis, Santa Catarina State, Brazil
| | - Fabrizio Caputo
- Human Performance Research Group, Center for Health and Sport Science, Santa Catarina State University, Florianópolis, Santa Catarina State, Brazil
- * E-mail:
| |
Collapse
|
5
|
Abstract
Muscular exercise requires transitions to and from metabolic rates often exceeding an order of magnitude above resting and places prodigious demands on the oxidative machinery and O2-transport pathway. The science of kinetics seeks to characterize the dynamic profiles of the respiratory, cardiovascular, and muscular systems and their integration to resolve the essential control mechanisms of muscle energetics and oxidative function: a goal not feasible using the steady-state response. Essential features of the O2 uptake (VO2) kinetics response are highly conserved across the animal kingdom. For a given metabolic demand, fast VO2 kinetics mandates a smaller O2 deficit, less substrate-level phosphorylation and high exercise tolerance. By the same token, slow VO2 kinetics incurs a high O2 deficit, presents a greater challenge to homeostasis and presages poor exercise tolerance. Compelling evidence supports that, in healthy individuals walking, running, or cycling upright, VO2 kinetics control resides within the exercising muscle(s) and is therefore not dependent upon, or limited by, upstream O2-transport systems. However, disease, aging, and other imposed constraints may redistribute VO2 kinetics control more proximally within the O2-transport system. Greater understanding of VO2 kinetics control and, in particular, its relation to the plasticity of the O2-transport/utilization system is considered important for improving the human condition, not just in athletic populations, but crucially for patients suffering from pathologically slowed VO2 kinetics as well as the burgeoning elderly population.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy, and Physiology, Kansas State University, Manhattan, Kansas, USA.
| | | |
Collapse
|
6
|
Abstract
The activities of daily living typically occur at metabolic rates below the maximum rate of aerobic energy production. Such activity is characteristic of the nonsteady state, where energy demands, and consequential physiological responses, are in constant flux. The dynamics of the integrated physiological processes during these activities determine the degree to which exercise can be supported through rates of O₂ utilization and CO₂ clearance appropriate for their demands and, as such, provide a physiological framework for the notion of exercise intensity. The rate at which O₂ exchange responds to meet the changing energy demands of exercise--its kinetics--is dependent on the ability of the pulmonary, circulatory, and muscle bioenergetic systems to respond appropriately. Slow response kinetics in pulmonary O₂ uptake predispose toward a greater necessity for substrate-level energy supply, processes that are limited in their capacity, challenge system homeostasis and hence contribute to exercise intolerance. This review provides a physiological systems perspective of pulmonary gas exchange kinetics: from an integrative view on the control of muscle oxygen consumption kinetics to the dissociation of cellular respiration from its pulmonary expression by the circulatory dynamics and the gas capacitance of the lungs, blood, and tissues. The intensity dependence of gas exchange kinetics is discussed in relation to constant, intermittent, and ramped work rate changes. The influence of heterogeneity in the kinetic matching of O₂ delivery to utilization is presented in reference to exercise tolerance in endurance-trained athletes, the elderly, and patients with chronic heart or lung disease.
Collapse
Affiliation(s)
- Harry B Rossiter
- Institute of Membrane and Systems Biology, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
7
|
Dogra S, Spencer MD, Murias JM, Paterson DH. Oxygen uptake kinetics in endurance-trained and untrained postmenopausal women. Appl Physiol Nutr Metab 2013; 38:154-60. [DOI: 10.1139/apnm-2012-0173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rate of adjustment for pulmonary oxygen uptake (τV̇O2p) is slower in untrained and in older adults. Near-infrared spectroscopy (NIRS) has shed light on potential mechanisms underlying this in young men and women and in older men; however, there is no such data available in older women. The purpose of this study was to gain a better understanding of the mechanisms of slower τV̇O2p in older women who were either endurance-trained or untrained. Endurance-trained (n = 10; age, 62.6 ± 1.0 years) and untrained (n = 9; age, 69.1 ± 2.2 years) older women attended 2 maximal and 2 submaximal (90% of ventilatory threshold) exercise sessions. Oxygen uptake (V̇O2) was measured breath by breath, using a mass spectrometer, and changes in deoxygenated hemoglobin concentration of the vastus lateralis ([HHb]) were measured using NIRS. Heart rate was measured continuously with a 3-lead electrocardiogram. τV̇O2p was faster in trained (35.1 ± 5.5 s) than in untrained (57.0 ± 8.1 s) women. The normalized [HHb] to V̇O2 ratio, an indicator of muscle O2 delivery to O2 utilization, indicated a smaller overshoot in trained (1.09 ± 0.1) than in untrained (1.39 ± 0.1) women. Heart rate data indicated a faster adjustment of heart rate in trained (33.0 ± 13.0) than in untrained (68.7 ± 14.1) women. The pairing of V̇O2p data with NIRS-derived [HHb] data indicates that endurance-trained older women likely have better matching of O2 delivery to O2 utilization than older untrained women during moderate-intensity exercise, leading to a more rapid adjustment of V̇O2p.
Collapse
Affiliation(s)
- Shilpa Dogra
- School of Recreation Management and Kinesiology, Acadia University, 550 Main St, Wolfville, NS B4P 2R6, Canada
| | - Matthew D. Spencer
- Canadian Centre for Activity and Aging, School of Kinesiology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Juan M. Murias
- Canadian Centre for Activity and Aging, School of Kinesiology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Donald H. Paterson
- Canadian Centre for Activity and Aging, School of Kinesiology, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
8
|
Neuromuscular Factors Associated with Decline in Long-Distance Running Performance in Master Athletes. Sports Med 2012; 43:51-63. [DOI: 10.1007/s40279-012-0006-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
|
10
|
Berger NJA, Jones AM. Pulmonary O2 uptake on-kinetics in sprint- and endurance-trained athletes. Appl Physiol Nutr Metab 2007; 32:383-93. [PMID: 17510672 DOI: 10.1139/h06-109] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary O2 uptake kinetics during "step" exercise have not been characterized in young, sprint-trained (SPT), athletes. Therefore, the objective of this study was to test the hypotheses that SPT athletes would have (i) slower phase II kinetics and (ii) a greater oxygen uptake "slow component" when compared with endurance-trained (ENT) athletes. Eight sub-elite SPT athletes (mean (+/-SD) age=25 (+/-7) y; mass=80.3 (+/-7.3) kg) and 8 sub-elite ENT athletes (age=28 (+/-4) y; mass=73.2 (+/-5.1) kg) completed a ramp incremental cycle ergometer test, a Wingate 30 s anaerobic sprint test, and repeat "step" transitions in work rate from 20 W to moderate- and severe-intensity cycle exercise, during which pulmonary oxygen uptake was measured breath by breath. The phase II oxygen uptake kinetics were significantly slower in the SPT athletes both for moderate (time constant, tau; SPT 32 (+/-4) s vs. ENT 17 (+/-3) s; p<0.01) and severe (SPT 32 (+/-12) s vs. ENT 20 (+/-6) s; p<0.05) exercise. The amplitude of the slow component (derived by exponential modelling) was not significantly different between the groups (SPT 0.55 (+/-0.12) L.min(-1) vs. ENT 0.50 (+/-0.22) L.min(-1)), but the increase in oxygen uptake between 3 and 6 min of severe exercise was greater in the SPT athletes (SPT 0.37 (+/-0.08) L.min(-1) vs. ENT 0.20 (+/-0.09) L.min(-1); p<0.01). The phase II tau was significantly correlated with indices of aerobic exercise performance (e.g., peak oxygen uptake (moderate-intensity r=-0.88, p<0.01; severe intensity r=-0.62; p<0.05), whereas the relative amplitude of the oxygen uptake slow component was significantly correlated with indices of anaerobic exercise performance (e.g., Wingate peak power output; r=0.77; p<0.01). Thus, it could be concluded that sub-elite SPT athletes have slower phase II oxygen uptake kinetics and a larger oxygen uptake slow component compared with sub-elite ENT athletes. It appears that indices of aerobic and anaerobic exercise performance differentially influence the fundamental and slow components of the oxygen uptake kinetics.
Collapse
Affiliation(s)
- Nicolas J A Berger
- School of Sport and Health Sciences, University of Exeter, St. Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | | |
Collapse
|
11
|
Cannon DT, Kolkhorst FW, Cipriani DJ. Electromyographic Data Do Not Support a Progressive Recruitment of Muscle Fibers during Exercise Exhibiting a VO2 Slow Component. J Physiol Anthropol 2007; 26:541-6. [DOI: 10.2114/jpa2.26.541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|