1
|
Visez N, Hamzé M, Vandenbossche K, Occelli F, de Nadaï P, Tobon Y, Hájek T, Choël M. Uptake of ozone by allergenic pollen grains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121793. [PMID: 37196838 DOI: 10.1016/j.envpol.2023.121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/14/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
Ozone exacerbates allergy symptoms to certain pollens. The molecular mechanisms by which ozone affects pollen grains (PGs) and allergies are not fully understood, especially as the effects of pollutants may vary depending on the type of pollen. In this work, pollens of 22 different taxa were exposed under laboratory conditions to ozone (100 ppb) to quantify the ozone uptake by the PGs. The ozone uptake was highly variable among the 22 taxa tested. The highest ozone uptake per PG was measured on Acer negundo PGs (2.5 ± 0.2 pg. PG-1). On average, tree pollens captured significantly more ozone than herbaceous pollens (average values of 0.5 and 0.02 pg. PG-1, respectively). No single parameter (such as the number of apertures, time of the year for the pollen season, pollen size, or lipid fraction) could predict a pollen's ability to take up ozone. Lipids seem to act as a barrier to ozone uptake and play a protective role for some taxa. After inhalation of PGs, pollen-transported ozone could be transferred to mucous membranes and exacerbate symptoms through oxidative stress and local inflammation. Although the amount of ozone transported is small in absolute terms, it is significant compared to the antioxidant capacity of nasal mucus at a microscale. This mechanism of pollen-induced oxidative stress could explain the aggravation of allergic symptoms during ozone pollution episodes.
Collapse
Affiliation(s)
- Nicolas Visez
- Univ. Lille, CNRS, UMR, 8516, LASIRE - Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France.
| | - Mona Hamzé
- Univ. Lille, CNRS, UMR, 8516, LASIRE - Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France; Univ. Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de L'Atmosphère, F-59000, Lille, France
| | - Klervi Vandenbossche
- Univ. Lille, CNRS, UMR, 8516, LASIRE - Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France; Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR, 4515, LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000, Lille, France
| | - Florent Occelli
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR, 4515, LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000, Lille, France
| | - Patricia de Nadaï
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Yeny Tobon
- Univ. Lille, CNRS, UMR, 8516, LASIRE - Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France
| | - Tomáš Hájek
- University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Marie Choël
- Univ. Lille, CNRS, UMR, 8516, LASIRE - Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France
| |
Collapse
|
2
|
Chichiriccò G, Poma A, Pace L. Nanoporous silica gel can compete with the flower stigma in germinating and attracting pollen tubes. FRONTIERS IN PLANT SCIENCE 2022; 13:927725. [PMID: 35968106 PMCID: PMC9363783 DOI: 10.3389/fpls.2022.927725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
To find nanoporous substrates with hydrodynamic properties useful for pollen hydration and germination, we used the glassy Silica gel and Vycor scales and pollen with different morphological and physiological traits, that of Crocus vernus, and that of Narcissus poeticus. For in vitro tests, the scales were spread on microscope slides, hand pollinated, and incubated. Pollen germination was evaluated with the stereomicroscope and the tube growth was explored with scanning electron microscopy (SEM). The in vivo tests were carried out by sprinkling the stigmas of the Crocus plants with Silica gel scales and immediately after having pollinated them by hand, the plants were incubated. Three hours later, the stigmas were removed and treated for observation with SEM. In vitro the pollen of both species germinated on Silica gel with percentages similar to those of the in vivo and in vitro controls, accumulating fibrillary material at the interface. The tubes grew perpendicular to the surface of the scales, trying to penetrate the scales to the point of flattening with the apex. On Crocus stigmas sprinkled with Silica gel scales, pollen developed tubes that grew to the scales rather than penetrating the papillae. The results underline the close interaction of pollen with nanoporous artificial material, so much so that its pollen tubes are attracted to the Silica scales more than to the stigma papillae that arises from a mechanism of natural selection.
Collapse
|
3
|
A forty year journey: The generation and roles of NO in plants. Nitric Oxide 2019; 93:53-70. [DOI: 10.1016/j.niox.2019.09.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
|
4
|
Chichiriccò G, Pacini E, Lanza B. Pollenkitt of some monocotyledons: lipid composition and implications for pollen germination. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:920-926. [PMID: 31034724 DOI: 10.1111/plb.12998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
The composition of pollenkitt and its role in the progamic phase of reproduction are poorly understood. With the aim of extending knowledge on these topics, we chose to study two monocotyledons rich in pollenkitt, with bi-celled and long-lived pollen and dry-type stigma: Crocus vernus Hill subsp. vernus and Narcissus poeticus L. Fatty acids of pollenkitt were assayed with gas chromatography. Germination tests were performed in vivo by pollinating the stigmas with a beard hair under a stereomicroscope, and in vitro in liquid culture medium using pollen, either treated or not, with carbon disulphide to remove pollenkitt. The pollen tube percentages were evaluated using fluorescence microscopy techniques. Scanning electron microscopy was used to examine pollen and to follow the early post-pollination stages. Pollenkitt forms bridges between pollen grains but not between grains and stigma papillae. It consists of a mixture of 25 fatty acids, most with long and unsaturated chains, among which are some omega acids. The same acids with different percentages persist on the peritapetal membrane. After its removal, the pollen loses adhesiveness and dries quickly, but retains full capacity for germination on the papillae and can even trigger germination in contiguous pollen grains that do not touch the papillae. The results, while confirming the key role of pollenkitt in protecting pollen and favouring pollination, suggest secondary roles in the progamic phase, and highlight the interactive ability of the pollen regardless of lipid shell. The predominance of fatty acids with 18:3 and 16:0, as already noted in Brassica napus pollenkitt, suggests their hierarchy independent of plant species.
Collapse
Affiliation(s)
- G Chichiriccò
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - E Pacini
- Department of Environmental Biology, Botany section, University of Siena, Siena, Italy
| | - B Lanza
- Research Centre for Olive Growing and Oil Industry, Città S. Angelo, Italy
| |
Collapse
|
5
|
Zhao F, Durner J, Winkler JB, Traidl-Hoffmann C, Strom TM, Ernst D, Frank U. Pollen of common ragweed (Ambrosia artemisiifolia L.): Illumina-based de novo sequencing and differential transcript expression upon elevated NO 2/O 3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:503-514. [PMID: 28284545 DOI: 10.1016/j.envpol.2017.02.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 05/28/2023]
Abstract
Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic annual ruderal plant and native to Northern America, but now also spreading across Europe. Air pollution and climate change will not only affect plant growth, pollen production and duration of the whole pollen season, but also the amount of allergenic encoding transcripts and proteins of the pollen. The objective of this study was to get a better understanding of transcriptional changes in ragweed pollen upon NO2 and O3 fumigation. This will also contribute to a systems biology approach to understand the reaction of the allergenic pollen to air pollution and climate change. Ragweed plants were grown in climate chambers under controlled conditions and fumigated with enhanced levels of NO2 and O3. Illumina sequencing and de novo assembly revealed significant differentially expressed transcripts, belonging to different gene ontology (GO) terms that were grouped into biological process and molecular function. Transcript levels of the known Amb a ragweed encoding allergens were clearly up-regulated under elevated NO2, whereas the amount of allergen encoding transcripts was more variable under elevated O3 conditions. Moreover transcripts encoding allergen known from other plants could be identified. The transcriptional changes in ragweed pollen upon elevated NO2 fumigation indicates that air pollution will alter the transcriptome of the pollen. The changed levels of allergenic encoding transcripts may have an influence on the total allergenic potential of ragweed pollen.
Collapse
Affiliation(s)
- Feng Zhao
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Biochemical Plant Pathology, Technische Universität München, Center of Life and Food Sciences Weihenstephan, Freising-Weihenstephan, Germany.
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine, UNIKA-T, Augsburg, Germany; CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos-Wolfgang, Switzerland.
| | - Tim-Matthias Strom
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos-Wolfgang, Switzerland.
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos-Wolfgang, Switzerland.
| |
Collapse
|
6
|
Zhao F, Elkelish A, Durner J, Lindermayr C, Winkler JB, Ruёff F, Behrendt H, Traidl-Hoffmann C, Holzinger A, Kofler W, Braun P, von Toerne C, Hauck SM, Ernst D, Frank U. Common ragweed (Ambrosia artemisiifolia L.): allergenicity and molecular characterization of pollen after plant exposure to elevated NO2. PLANT, CELL & ENVIRONMENT 2016; 39:147-64. [PMID: 26177592 DOI: 10.1111/pce.12601] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 05/27/2023]
Abstract
Ragweed pollen is the main cause of allergenic diseases in Northern America, and the weed has become a spreading neophyte in Europe. Climate change and air pollution are speculated to affect the allergenic potential of pollen. The objective of this study was to investigate the effects of NO2 , a major air pollutant, under controlled conditions, on the allergenicity of ragweed pollen. Ragweed was exposed to different levels of NO2 throughout the entire growing season, and its pollen further analysed. Spectroscopic analysis showed increased outer cell wall polymers and decreased amounts of pectin. Proteome studies using two-dimensional difference gel electrophoresis and liquid chromatography-tandem mass spectrometry indicated increased amounts of several Amb a 1 isoforms and of another allergen with great homology to enolase Hev b 9 from rubber tree. Analysis of protein S-nitrosylation identified nitrosylated proteins in pollen from both conditions, including Amb a 1 isoforms. However, elevated NO2 significantly enhanced the overall nitrosylation. Finally, we demonstrated increased overall pollen allergenicity by immunoblotting using ragweed antisera, showing a significantly higher allergenicity for Amb a 1. The data highlight a direct influence of elevated NO2 on the increased allergenicity of ragweed pollen and a direct correlation with an increased risk for human health.
Collapse
Affiliation(s)
- Feng Zhao
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Amr Elkelish
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Biochemical Plant Pathology, Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Freising, 85350, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Franziska Ruёff
- Clinic and Polyclinic for Dermatology and Allergology, Faculty of Medicine, LMU München, Munich, 80337, Germany
| | - Heidrun Behrendt
- Center of Allergy & Environment München (ZAUM), Technische Universität and Helmholtz Zentrum München, Munich, 80802, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Claudia Traidl-Hoffmann
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Augsburg, 86156, Germany
| | - Andreas Holzinger
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Werner Kofler
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Paula Braun
- Department of Applied Sciences and Mechanotronics, University of Applied Science Munich, Munich, 80335, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| |
Collapse
|
7
|
Sénéchal H, Visez N, Charpin D, Shahali Y, Peltre G, Biolley JP, Lhuissier F, Couderc R, Yamada O, Malrat-Domenge A, Pham-Thi N, Poncet P, Sutra JP. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity. ScientificWorldJournal 2015; 2015:940243. [PMID: 26819967 PMCID: PMC4706970 DOI: 10.1155/2015/940243] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate) on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of "polluen," some methodological biases are underlined and research tracks in this field are proposed.
Collapse
Affiliation(s)
- Hélène Sénéchal
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
| | - Nicolas Visez
- Physical Chemistry of Combustion and Atmosphere Processes (PC2A), UMR CNRS 8522, University of Lille, 59655 Villeneuve d'Ascq, France
| | - Denis Charpin
- Pneumo-Allergology Department, North Hospital, 265 chemin des Bourrely, 13915 Marseille 20, France
| | - Youcef Shahali
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
- Persiflore, 18 avenue du Parc, 91220 Le Plessis-Pâté, France
| | | | - Jean-Philippe Biolley
- SEVE Team, Ecology and Biology of Interactions (EBI), UMR-CNRS-UP 7267, University of Poitiers, 3 rue Jacques Fort, 86073 Poitiers, France
| | | | - Rémy Couderc
- Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris 12, France
| | - Ohri Yamada
- French Agency for Food, Environmental and Occupational Health Safety, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Audrey Malrat-Domenge
- French Agency for Food, Environmental and Occupational Health Safety, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Nhân Pham-Thi
- Allergology Department, Pasteur Institute, 25-28 rue du Dr. Roux, 75724 Paris 15, France
| | - Pascal Poncet
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
- Infections & Epidemiology Department, Pasteur Institute, 25-28 rue du Dr. Roux, 75724 Paris 15, France
| | - Jean-Pierre Sutra
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
| |
Collapse
|
8
|
Chichiriccò G, Poma A. Penetration and Toxicity of Nanomaterials in Higher Plants. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:851-873. [PMID: 28347040 PMCID: PMC5312920 DOI: 10.3390/nano5020851] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/14/2022]
Abstract
Nanomaterials (NMs) comprise either inorganic particles consisting of metals, oxides, and salts that exist in nature and may be also produced in the laboratory, or organic particles originating only from the laboratory, having at least one dimension between 1 and 100 nm in size. According to shape, size, surface area, and charge, NMs have different mechanical, chemical, electrical, and optical properties that make them suitable for technological and biomedical applications and thus they are being increasingly produced and modified. Despite their beneficial potential, their use may be hazardous to health owing to the capacity to enter the animal and plant body and interact with cells. Studies on NMs involve technologists, biologists, physicists, chemists, and ecologists, so there are numerous reports that are significantly raising the level of knowledge, especially in the field of nanotechnology; however, many aspects concerning nanobiology remain undiscovered, including the interactions with plant biomolecules. In this review we examine current knowledge on the ways in which NMs penetrate plant organs and interact with cells, with the aim of shedding light on the reactivity of NMs and toxicity to plants. These points are discussed critically to adjust the balance with regard to the risk to the health of the plants as well as providing some suggestions for new studies on this topic.
Collapse
Affiliation(s)
- Giuseppe Chichiriccò
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, I-67010 Coppito, L'Aquila, Italy.
| | - Anna Poma
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, I-67010 Coppito, L'Aquila, Italy.
| |
Collapse
|
9
|
Silva M, Ribeiro H, Abreu I, Cruz A, Esteves da Silva JCG. Effects of CO₂ on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:6904-6911. [PMID: 25471717 DOI: 10.1007/s11356-014-3896-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Atmospheric gaseous pollutants can induce qualitative and quantitative changes in airborne pollen characteristics. In this work, it was investigated the effects of carbon dioxide (CO2) on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates. Pollen was collected directly from the anthers and in vitro exposed to three CO2 levels (500, 1000, and 3000 ppm) for 6 and 24 h in an environmental chamber. Pollen fertility was determined using viability and germination assays, total soluble protein was determined with Coomassie Protein Assay Reagent, and the antigenic and allergenic properties were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunological techniques using patients' sera. Also, pollen fructose, sucrose, and glucose values were determined. Carbon dioxide exposure affected negatively pollen fertility, total soluble protein content, and fructose content. The patient sera revealed increased IgE reactivity to proteins of A. negundo pollen exposed to increasing levels of the pollutant. No changes were detected in the SDS-PAGE protein profiles and in sucrose and glucose levels. Our results indicate that increase in atmospheric CO2 concentrations can have a negative influence of some features of A. negundo airborne pollen that can influence the reproductive processes as well as respiratory pollen allergies in the future.
Collapse
Affiliation(s)
- M Silva
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | | | | | | | | |
Collapse
|
10
|
Cuinica LG, Abreu I, Esteves da Silva J. Effect of air pollutant NO₂ on Betula pendula, Ostrya carpinifolia and Carpinus betulus pollen fertility and human allergenicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 186:50-5. [PMID: 24361564 DOI: 10.1016/j.envpol.2013.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 05/20/2023]
Abstract
Pollen of Betula pendula, Ostrya carpinifolia and Carpinus betulus was exposed in vitro to two levels of NO2 (about 0.034 and 0.067 ppm) - both below current atmospheric hour-limit value acceptable for human health protection in Europe (0.11 ppm for NO2). Experiments were performed under artificial solar light with temperature and relative humidity continuously monitored. The viability, germination and total soluble proteins of all the pollen samples exposed to NO2 decreased significantly when compared with the non-exposed. The polypeptide profiles of all the pollen samples showed bands between 15 and 70 kDa and the exposure to NO2 did not produce any detectable changes in these profiles. However, the immunodetection assays indicated higher IgE recognition by patient sera sensitized to the pollen extracts from all exposed samples in comparison to the non-exposed samples. The common reactive bands to the three pollen samples correspond to 58 and 17 kDa proteins.
Collapse
Affiliation(s)
- Lázaro G Cuinica
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, P-4169-007 Porto, Portugal; Centro de Geologia da Universidade do Porto, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, P-4169-007 Porto, Portugal
| | - Ilda Abreu
- Centro de Geologia da Universidade do Porto, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, P-4169-007 Porto, Portugal
| | - Joaquim Esteves da Silva
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, P-4169-007 Porto, Portugal.
| |
Collapse
|
11
|
Cuinica LG, Abreu I, da Silva JCGE. In vitro exposure of Ostrya carpinifolia and Carpinus betulus pollen to atmospheric levels of CO, O3 and SO 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2256-2262. [PMID: 24046226 DOI: 10.1007/s11356-013-2108-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/28/2013] [Indexed: 06/02/2023]
Abstract
Ostrya spp. and Carpinus spp. pollen was in vitro exposed to three atmospheric pollutants: CO, O3 and SO2. Two levels of each pollutant were used, and the first level corresponds to a concentration about the atmospheric hour-limit value acceptable for human health protection in Europe and the second level to about the triple of the first level. Experiments were done under artificial solar light with temperature and relative humidity controlled. The viability of the exposed pollen samples showed a significant decrease. Also, the germination percentage showed a significant decrease in both exposed pollens, and the effect was most pronounced for SO2, followed by O3 and CO. A general decreasing trend in the total soluble protein content of the exposed pollen samples when compared with the control was observed, but it was only statistically significant for the Ostrya spp pollen. The results showed marked effects were observed on the Ostrya spp. and Carpinus spp. pollen when exposed to air pollutant levels that can be considered safe for human health protection.
Collapse
Affiliation(s)
- Lázaro G Cuinica
- Centro de Investigação em Química (CIQ-UP), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- Departamento de Biologia e Grupo do Ambiente do Centro de Geologia da Universidade do Porto, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ilda Abreu
- Departamento de Biologia e Grupo do Ambiente do Centro de Geologia da Universidade do Porto, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Joaquim C G Esteves da Silva
- Centro de Investigação em Química (CIQ-UP), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
12
|
Duro A, Piccione V, Zampino D. Air quality biomonitoring through pollen viability of Fabaceae. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:3803-3817. [PMID: 22976116 DOI: 10.1007/s10661-012-2829-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/09/2012] [Indexed: 06/01/2023]
Abstract
In this study, pollen viability and germination of three plant species, Cercis siliquastrum L., Robinia pseudoacacia L., and Spartium junceum L., belonging to the Fabaceae family, was evaluated in sites with different intensity of road traffic, constantly monitored with continuous analysers for air pollutants (carbon monoxide (CO), sulphur dioxide (SO(2)), and nitrogen dioxide (NO(2))) by the Municipality of Catania. Two sites, in which road traffic was absent, were selected, too. The percentages of viable pollen by 2,3,5-trypheniltetrazolium chloride (TTC) test ranged from 59.0 to 90.2 % in C. siliquastrum, from 61.5 to 83.5 % in S. junceum and from 67.5 to 84.3 % in R. pseudoacacia. The percentages of germination varied from 41.0 to 72.7 % in C. siliquastrum, from 42.0 to 64.7 % in S. junceum and from 38.3 to 66.3 % in R. pseudoacacia. The highest percentages of viable pollens were found in no-road traffic stations by either TTC or germination tests, while the lowest values were detected in a site characterised by heavy road traffic. In the monitored period (2007-2009), pollen viability, germinability and tube length of C. siliquastrum resulted in a significant negative correlation to CO, SO(2) and NO(2), whereas data from TTC and germination tests on S. junceum and R. pseudoacacia pollens were not well correlated to air pollutants. The results showed that pollen viability, germination and tube growth in C. siliquastrum were affected by air pollution. S. junceum and R. pseudoacacia were not very influenced by air pollutants, suggesting a different pollen sensitivity of these species.
Collapse
Affiliation(s)
- Anna Duro
- Dipartimento di Botanica, Università di Catania, via A. Longo 19, 95125 Catania, Italy.
| | | | | |
Collapse
|
13
|
Sousa R, Duque L, Duarte AJ, Gomes CR, Ribeiro H, Cruz A, Esteves da Silva JCG, Abreu I. In vitro exposure of Acer negundo pollen to atmospheric levels of SO₂ and NO₂: effects on allergenicity and germination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:2406-2412. [PMID: 22296411 DOI: 10.1021/es2034685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the last years, a rising trend of pollen allergies in urban areas has been attributed to atmospheric pollution. In this work, we investigated the effects of SO(2) and NO(2) on the protein content, allergenicity, and germination rate of Acer negundo pollen. A novel environmental chamber was assembled to exposure pollen samples with SO(2) or NO(2) at two different levels: just below and two times the atmospheric hour-limit value acceptable for human health protection in Europe. Results showed that protein content was lower in SO(2)-exposed pollen samples and slightly higher in NO(2)-exposed pollen compared to the control sample. No different polypeptide profiles were revealed by SDS-PAGE between exposed and nonexposed pollen, but the immunodetection assays indicated higher IgE recognition by all sera of sensitized patients to Acer negundo pollen extracts in all exposed samples in comparison to the nonexposed samples. A decrease in the germination rate of exposed in contrast to nonexposed pollen was verified, which was more pronounced for NO(2)-exposed samples. Our results indicated that in urban areas, concentrations of SO(2) and NO(2) below the limits established for human protection can indirectly aggravate pollen allergy on predisposed individuals and affect plant reproduction.
Collapse
Affiliation(s)
- Raquel Sousa
- Grupo do Ambiente do Centro de Geologia, Universidade do Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|