1
|
Blacksell SD, Le KK, Rungrojn A, Wongsantichon J, Stenos J, Graves SR, Day NPJ. Gaps and inconsistencies in the current knowledge and implementation of biosafety and biosecurity practices for rickettsial pathogens. BMC Infect Dis 2024; 24:268. [PMID: 38424500 PMCID: PMC10905923 DOI: 10.1186/s12879-024-09151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION Rickettsia spp. and Orientia spp. are the causes of neglected infections that can lead to severe febrile and systemic illnesses in humans. Implementing proper biosafety practices when handling these pathogens is crucial to ensure a safe and sustainable work environment. It is essential to assess the current knowledge and identify any potential gaps to develop effective measures that minimise the risk of exposure to these pathogens. By doing so, we can establish a comprehensive framework that promotes safety, mitigates hazards, and safeguards the well-being of personnel and the surrounding community. METHODS AND RESULTS This review aimed to synthesise and determine the evidence base for biosafety precautions for Rickettsia spp. and Orientia spp. pathogens. Enhancing our understanding of the relative infectious risk associated with different strains of Rickettsia and Orientia spp. requires identifying the infectious dose of these pathogens that can cause human disease. The application of risk groups for Rickettsia and Orientia spp. is inconsistent across jurisdictions. There is also incomplete evidence regarding decontamination methods for these pathogens. With regards to Orientia spp. most of the available information is derived from experiments conducted with Rickettsia spp. CONCLUSIONS Rickettsia and Orientia spp. are neglected diseases, as demonstrated by the lack of evidence-based and specific biosafety information about these pathogens. In the case of Orientia spp., most of the available information is derived from Rickettsia spp., which may not be appropriate and overstate the risks of working with this pathogen. The advent of effective antibiotic therapy and a better understanding of the true hazards and risks associated with pathogen manipulation should inform decisions, allowing a sustainable and safe work environment.
Collapse
Affiliation(s)
- Stuart D Blacksell
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Department of Medicine Research Building, University of Oxford, Nuffield, Oxford, UK.
| | - Khanh Kim Le
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Artharee Rungrojn
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - Jantana Wongsantichon
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC, Australia
| | - Stephen R Graves
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC, Australia
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, 10400, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Department of Medicine Research Building, University of Oxford, Nuffield, Oxford, UK
| |
Collapse
|
2
|
Mathews KO, Phalen D, Norris JM, Stenos J, Toribio JA, Wood N, Graves S, Sheehy PA, Nguyen C, Bosward KL. Serological Evidence of Exposure to Spotted Fever Group and Typhus Group Rickettsiae in Australian Wildlife Rehabilitators. Pathogens 2021; 10:pathogens10060745. [PMID: 34204809 PMCID: PMC8231516 DOI: 10.3390/pathogens10060745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Rickettsioses are arthropod-borne zoonotic diseases, several of which occur in Australia. This study aimed to assess the exposure levels and risk factors for Rickettsia spp. among Australian wildlife rehabilitators (AWRs) using serology, PCR and a questionnaire. Antibody titres against Spotted Fever Group (SFG), Typhus Group (TG) and Scrub Typhus Group (STG) antigens were determined using an immunofluorescence assay. PCR targeting the gltA gene was performed on DNA extracts from whole blood and serum. Logistic regression was used to identify risk factors associated with seropositivity. Of the 27 (22.1%; 27/122) seropositive participants all were seropositive for SFG, with 5/27 (4.1%) also positive for TG. Of the 27 positive sera, 14.8% (4/27) were further classified as exposure to R. australis, 3.7% (1/27) to R. honei, 3.7% (1/27) to R. felis and 77.8% (21/27) were classified as ‘indeterminate’—most of which (85.7%; 18/21) were indeterminate R. australis/R. honei exposures. Rickettsia DNA was not detected in whole blood or serum. Rehabilitators were more likely to be seropositive if more than one household member rehabilitated wildlife, were older than 50 years or had occupational animal contact. These findings suggest that AWRs are at increased risk of contracting Rickettsia-related illnesses, however the source of the increased seropositivity remains unclear.
Collapse
Affiliation(s)
- Karen O. Mathews
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; (D.P.); (J.M.N.); (J.-A.T.); (P.A.S.)
- Correspondence: (K.O.M.); (K.L.B.)
| | - David Phalen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; (D.P.); (J.M.N.); (J.-A.T.); (P.A.S.)
| | - Jacqueline M. Norris
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; (D.P.); (J.M.N.); (J.-A.T.); (P.A.S.)
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia; (J.S.); (S.G.); (C.N.)
| | - Jenny-Ann Toribio
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; (D.P.); (J.M.N.); (J.-A.T.); (P.A.S.)
| | - Nicholas Wood
- Discipline of Paediatrics and Child Health, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia;
- National Centre for Immunisation Research and Surveillance, Westmead, NSW 2145, Australia
| | - Stephen Graves
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia; (J.S.); (S.G.); (C.N.)
| | - Paul A. Sheehy
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; (D.P.); (J.M.N.); (J.-A.T.); (P.A.S.)
| | - Chelsea Nguyen
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia; (J.S.); (S.G.); (C.N.)
| | - Katrina L. Bosward
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia; (D.P.); (J.M.N.); (J.-A.T.); (P.A.S.)
- Correspondence: (K.O.M.); (K.L.B.)
| |
Collapse
|
3
|
Wang P, Xiong X, Jiao J, Yang X, Jiang Y, Wen B, Gong W. Th1 epitope peptides induce protective immunity against Rickettsia rickettsii infection in C3H/HeN mice. Vaccine 2017; 35:7204-7212. [PMID: 29032899 DOI: 10.1016/j.vaccine.2017.09.068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/01/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
Abstract
Rickettsia rickettsii is the causative pathogen of Rocky Mountain spotted fever (RMSF). Adr2, YbgF and OmpB are protective antigens of R. rickettsii. In this study, 90 candidate peptides were selected from these antigens based on their high-affinity binding capacity for the MHC class II molecule H2 I-A or H2 I-E using bioinformatic methods. Six peptides were determined using ELISPOT assay to be immunodominant based on the IFN-γ recall responses of CD4+ T cells from mice immunized with R. rickettsii. Six nucleotide sequences encoding the immunodominant peptides were linked in series and inserted into a plasmid for expression in Escherichia coli cells, resulting in a new, recombinant polypeptide termed GWP. After immunization and challenge, the rickettsial load or histopathological lesions in the organs of mice immunized with GWP or pooled peptides was significantly lower than that in organs of mice immunized with PBS or the individual peptide OmpB399. An in vitro neutralization test revealed that sera from mice immunized with GWP, OmpB399, or pooled peptides reduced R. rickettsii adherence to, and invasion of, vascular endothelial cells. Furthermore, significantly higher levels of IgG, IgG1, or IgG2a were detected in sera from mice immunized with GWP or pooled peptides, and significantly higher levels of IFN-γ or TNF-α secreted by CD4+ T cells from R. rickettsii-infected mice were detected after immunization with GWP. Altogether, our results indicated that polypeptides, especially GWP, could induce a Th1-type immune response against R. rickettsii infection, which might contribute to the rational design of peptide-based vaccines for RMSF.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Xiaomei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China
| | - Wenping Gong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20# Dong-Dia-Jie Street, Fengtai, Beijing 100071, China; Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, The 309th Hospital of Chinese PLA, 17# Hei-Shan-Hu Road, Haidian, Beijing 100091, China.
| |
Collapse
|
4
|
Nonselective Persistence of a Rickettsia conorii Extrachromosomal Plasmid during Mammalian Infection. Infect Immun 2016; 84:790-7. [PMID: 26755154 DOI: 10.1128/iai.01205-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/28/2015] [Indexed: 01/26/2023] Open
Abstract
Scientific analysis of the genus Rickettsia is undergoing a rapid period of change with the emergence of viable genetic tools. The development of these tools for the mutagenesis of pathogenic bacteria will permit forward genetic analysis of Rickettsia pathogenesis. Despite these advances, uncertainty still remains regarding the use of plasmids to study these bacteria in in vivo mammalian models of infection, namely, the potential for virulence changes associated with the presence of extrachromosomal DNA and nonselective persistence of plasmids in mammalian models of infection. Here, we describe the transformation of Rickettsia conorii Malish 7 with the plasmid pRam18dRGA[AmTrCh]. Transformed R. conorii stably maintains this plasmid in infected cell cultures, expresses the encoded fluorescent proteins, and exhibits growth kinetics in cell culture similar to those of nontransformed R. conorii. Using a well-established murine model of fatal Mediterranean spotted fever, we demonstrate that R. conorii(pRam18dRGA[AmTrCh]) elicits the same fatal outcomes in animals as its untransformed counterpart and, importantly, maintains the plasmid throughout infection in the absence of selective antibiotic pressure. Interestingly, plasmid-transformed R. conorii was readily observed both in endothelial cells and within circulating leukocytes. Together, our data demonstrate that the presence of an extrachromosomal DNA element in a pathogenic rickettsial species does not affect either in vitro proliferation or in vivo infectivity in models of disease and that plasmids such as pRam18dRGA[AmTrCh] are valuable tools for the further genetic manipulation of pathogenic rickettsiae.
Collapse
|
5
|
Gong W, Wang P, Xiong X, Jiao J, Yang X, Wen B. Enhanced protection against Rickettsia rickettsii infection in C3H/HeN mice by immunization with a combination of a recombinant adhesin rAdr2 and a protein fragment rOmpB-4 derived from outer membrane protein B. Vaccine 2015; 33:985-92. [PMID: 25597943 DOI: 10.1016/j.vaccine.2015.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Two surface proteins of Rickettsia rickettsii, outer membrane protein B (OmpB) and adhesion 2 (Adr2), have been recognized as protective antigens. Herein, the immunization with both OmpB and Adr2 was performed in mice so as to explore whether their combination could induce an enhanced immunoprotection against R. rickettsii infection. METHODS C3H/HeN mice were immunized with recombinant protein rAdr2 or/and rOmp-4, a fragment derived from OmpB, and then mice were challenged with R. rickettsii. After which rickettsial loads in mice were measured by quantitative PCR. The specific antibodies in mouse sera were determined by ELISA and antigen-specific cytokines secretion by mouse T cells were analyzed in vitro. RESULTS After challenge with R. rickettsii, the mice immunized with rAdr2 or/and rOmpB-4 had significant lower rickettsial load in livers, spleens, or lungs compared to PBS mock-immunized mice. Particularly, the load in lungs of mice immunized with both rAdr2 and rOmpB-4 was significantly lower than that with either of them. High levels of specific antibodies were detected in sera from mice immunized with rAdr2 or/and rOmpB-4, but the ratios of specific IgG2a to IgG1 induced by their combination were significantly higher than that by either rAdr2 or rOmpB-4. Following stimulation with rAdr2 or/and rOmpB-4, the INF-γ secreted by CD4(+) T cells from infected mice was significantly higher than that by cognate cells from uninfected mice. And the TNF-α secreted by CD4(+) or CD8(+) T cells from infected mice was markedly greater than that by cognate cells from uninfected mice after stimulation by their combination but not either of them. CONCLUSION The combination of rAdr2 and rOmpB-4 conferred an enhanced protection against R. rickettsii infection in mice, which was mainly dependent on a stronger Th1-oriented immunoresponse with greater INF-γ and TNF-α secretion by antigen-specific T cells and specific IgG2a elicited by the combination.
Collapse
Affiliation(s)
- Wenping Gong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China
| | - Pengcheng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China; Department of Clinical Laboratory, The 105th Hospital of PLA, Hefei, Anhui 230031, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China.
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China
| | - Xiaomei Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 20 Dong-Da-Jie Street, Fengtai, Beijing 100071, China.
| |
Collapse
|
6
|
Eremeeva ME, Shpynov SN, Tokarevich NK. MODERN APPROACHES TO LABORATORY DIAGNOSIS OF RICKETTSIAL DISEASES. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2014. [DOI: 10.15789/2220-7619-2014-2-113-134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract. We present a concise review of contemporary laboratory methods for diagnosis of rickettsioses with special emphasis on diseases known in Russian Federation. Classic and emerging rickettsioses are transmitted by a diverse and expanding group of arthropod vectors including ticks, fleas, lice and mites. While epidemiological and clinical clues can provide information important for initial suspicion of rickettsial infection, sensitive and specific laboratory methods are necessary for providing probable or confirmed diagnosis of the rickettsial infection. Accurate and rapid confirmation of rickettsial infection is important for ensuring proper clinical care and prompt initiation of antibiotic therapy. Correct identification of the etiology of rickettsial diseases is also important for early identification of clustered cases, novel foci of infections, and for timely initiation of public health responses to these potentially fatal infections.
Collapse
|
7
|
Surface protein Adr2 of Rickettsia rickettsii induced protective immunity against Rocky Mountain spotted fever in C3H/HeN mice. Vaccine 2014; 32:2027-33. [PMID: 24582636 DOI: 10.1016/j.vaccine.2014.02.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND Rickettsia rickettsii is the pathogen of Rocky Mountain spotted fever (RMSF), a life-threatening tick-transmitted infection. Adr2 was a surface-exposed adhesion protein of R. rickettsii and its immunoprotection against RMSF was investigated in mice. METHODS Recombinant Adr2 (rAdr2) was used to immunize C3H/HeN mice, and the rickettsial loads in organs of the mice were detected after challenge with R. rickettsii. The levels of specific antibodies of sera from the immunized mice were determined and the sera from immunized mice were applied to neutralize R. rickettsii. Proliferation and cytokine secretion of CD4(+) and CD8(+) T cells isolated from R. rickettsii-infected mice were also assayed after rAdr2 stimulation. RESULTS After R. rickettsii challenge, the rickettsial loads in spleens, livers, and lungs were significantly lower and the impairment degrees of these organs in rAdr2-immunized mice were markedly slighter, compared with those in negative control mice. The ratio of specific IgG2a/IgG1 of rAdr2-immunized mice kept increasing during the immunization. After treatment with rAdr2-immunized sera, the total number of R. rickettsii organisms adhering and invading host cells was significantly lower than that treated with PBS-immunized sera. Interferon-γ secretion by CD4(+) or CD8(+) T cells and tumor necrosis factor-α secretion by CD4(+) T cells from R. rickettsii-infected mice were respectively significantly greater than those from uninfected mice after rAdr2 stimulation. CONCLUSION Adr2 is a protective antigen of R. rickettsii. Protection offered by Adr2 is mainly dependent on antigen-specific cell-mediated immune responses, including efficient activity of CD4(+) and CD8(+) T cells to produce great amount of TNF-α and/or IFN-γ as well as rapid increase of specific IgG2a, which synergistically activate and opsonize host cells to killing intracellular rickettsiae.
Collapse
|
8
|
Hillman RD, Baktash YM, Martinez JJ. OmpA-mediated rickettsial adherence to and invasion of human endothelial cells is dependent upon interaction with α2β1 integrin. Cell Microbiol 2012; 15:727-41. [PMID: 23145974 DOI: 10.1111/cmi.12068] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 10/10/2012] [Accepted: 11/06/2012] [Indexed: 12/11/2022]
Abstract
Rickettsia conorii, a member of the spotted fever group (SFG) of the genus Rickettsia and causative agent of Mediterranean spotted fever, is an obligate intracellular pathogen capable of infecting various mammalian cell types. SFG rickettsiae express two major immunodominant surface cell antigen (Sca) proteins, OmpB (Sca5) and OmpA (Sca0). While OmpB-mediated entry has been characterized, the contribution of OmpA has not been well defined. Here we show OmpA expression in Escherichia coli is sufficient to mediate adherence to and invasion of non-phagocytic human endothelial cells. A recombinant soluble C-terminal OmpA protein domain (954-1735) with predicted structural homology to the Bordetella pertussis pertactin protein binds mammalian cells and perturbs R. conorii invasion by interacting with several mammalian proteins including β1 integrin. Using functional blocking antibodies, small interfering RNA transfection, and mouse embryonic fibroblast cell lines, we illustrate the contribution of α2β1 integrin as a mammalian ligand involved in R. conorii invasion of primary endothelial cells. We further demonstrate that OmpA-mediated attachment to mammalian cells is in part dependent on a conserved non-continuous RGD motif present in a predicted C-terminal 'pertactin' domain in OmpA.Our results demonstrate that multiple adhesin-receptor pairs are sufficient in mediating efficient bacterial invasion of R. conorii.
Collapse
Affiliation(s)
- Robert D Hillman
- Department of Microbiology, The University of Chicago, 920 East 58th Street, Cummings Life Sciences Center 707A, Chicago, IL 60637, USA
| | | | | |
Collapse
|
9
|
Tamrakar SB, Haas CN. Dose-response model of Rocky Mountain spotted fever (RMSF) for human. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2011; 31:1610-21. [PMID: 21453373 DOI: 10.1111/j.1539-6924.2011.01604.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Rickettsia rickettsii is the causative agent of Rocky Mountain spotted fever (RMSF) and is the prototype bacterium in the spotted fever group of rickettsiae, which is found in North, Central, and South America. The bacterium is gram negative and an obligate intracellular pathogen. The disease is transmitted to humans and vertebrate host through tick bites; however, some cases of aerosol transmission also have been reported. The disease can be difficult to diagnose in the early stages, and without prompt and appropriate treatment, it can be fatal. This article develops dose-response models of different routes of exposure for RMSF in primates and humans. The beta-Poisson model provided the best fit to the dose-response data of aerosol-exposed rhesus monkeys, and intradermally inoculated humans (morbidity as end point of response). The average 50% infectious dose among (ID₅₀) exposed human population, N₅₀, is 23 organisms with 95% confidence limits of 1 to 89 organisms. Similarly, ID₁₀ and ID₂₀ are 2.2 and 5.0, respectively. Moreover, the data of aerosol-exposed rhesus monkeys and intradermally inoculated humans could be pooled. This indicates that the dose-response models fitted to different data sets are not significantly different and can be described by the same relationship.
Collapse
Affiliation(s)
- Sushil B Tamrakar
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
10
|
Molecular basis of immunity to rickettsial infection conferred through outer membrane protein B. Infect Immun 2011; 79:2303-13. [PMID: 21444665 DOI: 10.1128/iai.01324-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic rickettsiae are the causative agents of Rocky Mountain spotted fever, typhus, and other human diseases with high mortality and an important impact on society. Although survivors of rickettsial infections are considered immune to disease, the molecular basis of this immunity or the identification of protective antigens that enable vaccine development was hitherto not known. By exploring the molecular pathogenesis of Rickettsia conorii, the agent of Mediterranean spotted fever, we report here that the autotransporter protein, rickettsial outer membrane protein B (rOmpB), constitutes a protective antigen for this group of pathogens. A recombinant, purified rOmpB passenger domain fragment comprised of amino acids 36 to 1334 is sufficient to elicit humoral immune responses that protect animals against lethal disease. Protective immunity requires folded antigen and production of antibodies that recognize conformational epitopes on the rickettsial surface. Monoclonal antibodies (MAbs) 5C7.27 and 5C7.31, which specifically recognize a conformation present in the folded, intact rOmpB passenger domain, are sufficient to confer immunity in vivo. Analyses in vitro indicate this protection involves a mechanism of complement-mediated killing in mammalian blood, a means of rickettsial clearance that has not been previously described. Considering the evolutionary conservation of rOmpB and its crucial contribution to bacterial invasion of host cells, we propose that rOmpB antibody-mediated killing confers immunity to rickettsial infection.
Collapse
|
11
|
Chan YGY, Riley SP, Martinez JJ. Adherence to and invasion of host cells by spotted Fever group rickettsia species. Front Microbiol 2010; 1:139. [PMID: 21687751 PMCID: PMC3109342 DOI: 10.3389/fmicb.2010.00139] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/09/2010] [Indexed: 11/18/2022] Open
Abstract
The pathogenic lifecycle of obligate intracellular bacteria presents a superb opportunity to develop understanding of the interaction between the bacteria and host under the pretext that disruption of these processes will likely lead to death of the pathogen and prevention of associated disease. Species of the genus Rickettsia contain some of the most hazardous of the obligate intracellular bacteria, including Rickettsia rickettsii and R. conorii the causative agents of Rocky Mountain and Mediterranean spotted fevers, respectively. Spotted fever group Rickettsia species commonly invade and thrive within cells of the host circulatory system whereby the endothelial cells are severely perturbed. The subsequent disruption of circulatory continuity results in much of the severe morbidity and mortality associated with these diseases, including macropapular dermal rash, interstitial pneumonia, acute renal failure, pulmonary edema, and other multisystem manifestations. This review describes current knowledge of the essential pathogenic processes of adherence to and invasion of host cells, efforts to disrupt these processes, and potential for disease prevention through vaccination with recently identified bacterial adherence and invasion proteins. A more complete understanding of these bacterial proteins will provide an opportunity for prevention and treatment of spotted fever group Rickettsia infections.
Collapse
|
12
|
The Rickettsia conorii autotransporter protein Sca1 promotes adherence to nonphagocytic mammalian cells. Infect Immun 2010; 78:1895-904. [PMID: 20176791 DOI: 10.1128/iai.01165-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenesis of spotted fever group (SFG) Rickettsia species, including R. conorii and R. rickettsii, is acutely dependent on adherence to and invasion of host cells, including cells of the mammalian endothelial system. Bioinformatic analyses of several rickettsia genomes revealed the presence of a cohort of genes designated sca genes that are predicted to encode proteins with homology to autotransporter proteins of Gram-negative bacteria. Previous work demonstrated that three members of this family, rOmpA (Sca0), Sca2, and rOmpB (Sca5) are involved in the interaction with mammalian cells; however, very little was known about the function of other conserved rickettsial Sca proteins. Here we demonstrate that sca1, a gene present in nearly all SFG rickettsia genomes, is actively transcribed and expressed in R. conorii cells. Alignment of Sca1 sequences from geographically diverse SFG Rickettsia species showed that there are high degrees of sequence identity and conservation of these sequences, suggesting that Sca1 may have a conserved function. Using a heterologous expression system, we demonstrated that production of R. conorii Sca1 in the Escherichia coli outer membrane is sufficient to mediate attachment to but not invasion of a panel of cultured mammalian epithelial and endothelial cells. Furthermore, preincubation of a recombinant Sca1 peptide with host cells blocked R. conorii cell association. Together, these results demonstrate that attachment to mammalian cells can be uncoupled from the entry process and that Sca1 is involved in the adherence of R. conorii to host cells.
Collapse
|
13
|
Dana AN. Diagnosis and treatment of tick infestation and tick-borne diseases with cutaneous manifestations. Dermatol Ther 2009; 22:293-326. [PMID: 19580576 DOI: 10.1111/j.1529-8019.2009.01244.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hard and soft ticks may be associated directly or indirectly with a number of dermatoses, both infectious and inflammatory in origin. Morbidity may occur as a result of tick bites, tick toxicosis, and even infestation. These arthropod vectors may transmit life-threatening protozoan, bacterial, rickettsial, and viral diseases with systemic and cutaneous findings. Additionally, ticks may transmit more than one pathogen with subsequent human coinfection. This article reviews the presentation of tick-borne illnesses and the medical management of these diseases. Among others, diseases such as ehrlichiosis, anaplasmosis, babesiosis, tularemia, borrelioses, tick-borne encephalitides, rickettsial spotted fevers, and tick typhus are discussed in this article. The recognition of skin manifestations associated with these diseases is paramount to early diagnosis and treatment initiation.
Collapse
Affiliation(s)
- Ali N Dana
- Department of Dermatology, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
14
|
Abstract
A highly infectious disease (HID) that is transmissible from person to person causes life-threatening illness and presents a serious hazard in the healthcare setting and in the community that requires specific control measures. Due to environmental factors, changes in lifestyle and many other unknown factors, the emergence of such HIDs is becoming more and more likely. As has already been demonstrated during the SARS outbreak, healthcare facilities are likely to be the origin of future HID outbreaks. Preparedness planning will be essential in helping facilities manage future outbreaks of emerging or resurgent infectious diseases. Guidelines have been developed by national and international institutions. To avoid contamination of healthcare workers, the care of HID patients should follow the same infection control rules that are applied to laboratory workers exposed to similar agents. Here, the current knowledge concerning the clinical care of patients with HIDs is reviewed, and specific aspects of the management of such diseases are introduced.
Collapse
Affiliation(s)
- P Brouqui
- BSL3 infectious diseases isolation unit, URMITE UMR 6236 CNRS/IRD, Infectious Disease and Tropical Medicine Service, AP-HM, Marseille, France.
| |
Collapse
|
15
|
Brouqui P, Puro V, Fusco FM, Bannister B, Schilling S, Follin P, Gottschalk R, Hemmer R, Maltezou HC, Ott K, Peleman R, Perronne C, Sheehan G, Siikamäki H, Skinhoj P, Ippolito G. Infection control in the management of highly pathogenic infectious diseases: consensus of the European Network of Infectious Disease. THE LANCET. INFECTIOUS DISEASES 2009; 9:301-11. [PMID: 19393960 PMCID: PMC7106353 DOI: 10.1016/s1473-3099(09)70070-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The European Network for Infectious Diseases (EUNID) is a network of clinicians, public health epidemiologists, microbiologists, infection control, and critical-care doctors from the European member states, who are experienced in the management of patients with highly infectious diseases. We aim to develop a consensus recommendation for infection control during clinical management and invasive procedures in such patients. After an extensive literature review, draft recommendations were amended jointly by 27 partners from 15 European countries. Recommendations include repetitive training of staff to ascertain infection control, systematic use of cough and respiratory etiquette at admission to the emergency department, fluid sampling in the isolation room, and analyses in biosafety level 3/4 laboratories, and preference for point-of-care bedside laboratory tests. Children should be cared for by paediatricians and intensive-care patients should be cared for by critical-care doctors in high-level isolation units (HLIU). Invasive procedures should be avoided if unnecessary or done in the HLIU, as should chest radiography, ultrasonography, and renal dialysis. Procedures that require transport of patients out of the HLIU should be done during designated sessions or hours in secure transport. Picture archiving and communication systems should be used. Post-mortem examination should be avoided; biopsy or blood collection is preferred.
Collapse
Affiliation(s)
- Philippe Brouqui
- Department of Infectious Diseases and Tropical Medicine, CHU Nord and URMITE IRD-CNRS UMR 6236, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bechah Y, Capo C, Mege JL, Raoult D. Rickettsial diseases: from Rickettsia-arthropod relationships to pathophysiology and animal models. Future Microbiol 2008; 3:223-36. [PMID: 18366341 DOI: 10.2217/17460913.3.2.223] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rickettsiae cause spotted fevers and typhus-related diseases in humans. Some of these diseases occur worldwide and are life-threatening, for example, epidemic typhus is still a major health problem despite the apparent efficiency of antibiotic treatment. In addition, Rickettsia prowazekii, the agent of epidemic typhus, and R. rickettsii, the agent of Rocky Mountain spotted fever, are microorganisms that could potentially be used as bioweapons to induce panic in the population. Rickettsiae are obligate intracellular bacteria in both vertebrate and invertebrate hosts, but rickettsial species differ in terms of association with arthropods, behavior of the vector to infection, pathophysiology and outcome of the disease. Understanding the pathogenic steps of rickettsioses is essential to develop protective strategies against these bacteriological threats. Unfortunately, the mechanisms involved in the pathogenesis of many rickettsioses are poorly characterized, and protective immunity is incompletely understood, in part because accurate animal models that mimic human diseases are lacking. In the past, murine models have been of limited value because infection of mice was without effect or resulted in erratic mortality. Recent studies have reported that rickettsial infection can be established in mice, depending on the genetic background of mice, the type of rickettsial species and the route of inoculation. These models may be useful for analyzing the pathogenesis of rickettsioses, especially epidemic typhus, evaluating new therapeutic molecules and vaccine candidates, and preventing future outbreaks.
Collapse
Affiliation(s)
- Yassina Bechah
- Unité des Rickettsies, CNRS UMR 6020, Université de la Méditerranée, Faculté de Médecine, 27 Bld. Jean Moulin, 13385 Marseille Cedex 05, France.
| | | | | | | |
Collapse
|
17
|
Raoult D, Roux V. Rickettsioses as paradigms of new or emerging infectious diseases. Clin Microbiol Rev 1997; 10:694-719. [PMID: 9336669 PMCID: PMC172941 DOI: 10.1128/cmr.10.4.694] [Citation(s) in RCA: 592] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rickettsioses are caused by species of Rickettsia, a genus comprising organisms characterized by their strictly intracellular location and their association with arthropods. Rickettsia species are difficult to cultivate in vitro and exhibit strong serological cross-reactions with each other. These technical difficulties long prohibited a detailed study of the rickettsiae, and it is only following the recent introduction of novel laboratory methods that progress in this field has been possible. In this review, we discuss the impact that these practical innovations have had on the study of rickettsiae. Prior to 1986, only eight rickettsioses were clinically recognized; however, in the last 10 years, an additional six have been discovered. We describe the different steps that resulted in the description of each new rickettsiosis and discuss the influence of factors as diverse as physicians' curiosity and the adoption of molecular biology-based identification in helping to recognize these new infections. We also assess the pathogenic potential of rickettsial strains that to date have been associated only with arthropods, and we discuss diseases of unknown etiology that may be rickettsioses.
Collapse
Affiliation(s)
- D Raoult
- Unité des Rickettsies, Faculté de Médecine, CNRS UPRESA 6020, Marseille, France.
| | | |
Collapse
|
18
|
Affiliation(s)
- J L Silber
- Department of Medicine, Cooper Hospital/University Medical Center, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School at Camden, USA
| |
Collapse
|
19
|
Abstract
An estimated 500,000 laboratory workers in the United States are at risk of exposure to infectious agents that cause disease ranging from inapparent to life-threatening infections, but the precise risk to a given worker unknown. The emergence of human immunodeficiency virus and hantavirus, the continuing problem of hepatitis B virus, and the reemergence of Mycobacterium tuberculosis have renewed interest in biosafety for the employees of laboratories and health care facilities. This review examines the history, the causes, and the methods for prevention of laboratory-associated infections. The initial step in a biosafety program is the assessment of risk to the employee. Risk assessment guidelines include the pathogenicity of the infectious agent, the method of transmission, worker-related risk factors, the source and route of infection, and the design of the laboratory facility. Strategies for the prevention and management of laboratory-associated infections are based on the containment of the infectious agent by physical separation from the laboratory worker and the environment, employee education about the occupational risks, and availability of an employee health program. Adherence to the biosafety guidelines mandated or proposed by various governmental and accrediting agencies reduces the risk of an occupational exposure to infectious agents handled in the workplace.
Collapse
Affiliation(s)
- D L Sewell
- Pathology and Laboratory Medicine Service, Veterans Affairs Medical Center, Portland, Oregon 97201, USA
| |
Collapse
|
20
|
INTRODUCTION. Infect Dis Clin North Am 1991. [DOI: 10.1016/s0891-5520(20)30411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
|
22
|
|
23
|
Ruiz-Beltrán R, Herrero-Herrero JI, Martín-Sánchez AM, Martín-González JA. Prevalence of antibodies to Rickettsia conorii Coxiella burnetii and Rickettsia typhi in Salamanca Province (Spain). Serosurvey in the human population. Eur J Epidemiol 1990; 6:293-9. [PMID: 2123799 DOI: 10.1007/bf00150435] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Salamanca Province of Spain is an endemic zone for Mediterranean spotted fever. In this area, only one case of Q fever has been reported and typhus group rickettsial diseases have never been diagnosed. To obtain a panoramic view of the presence of antibodies to the most ubiquitous rickettsial agents, 400 sera specimens from a statistically representative sample of the human population of Salamanca City and its surrounding province were subjected to indirect microimmunofluorescent test for antibodies against Rickettsia conorii, Coxiella burnetti, phase II, and Rickettsia typhi antigens. Titers greater than or equal to 1:40 to R. conorii were found in 73.5% of the sera. Positivity was more common in subjects who reported closer contact with the natural environment and/or with domestic animals. Seropositivity to C. burnetti, phase II, was detected in 50.2% of sera. These positive cases were related to rural environmental factors and to previous contact with animals. The frequency of antibodies increased with age showing a progressive exposure to the rickettsial antigen. The prevalence of antibodies to R. conorii and C. burnetii in the human population of Salamanca Province is higher than that reported from any other geographic zone. The study of antibodies to R. typhi showed that 12.5% of the sera had titers greater than or equal to 1:40. According to our results, seropositivity to this rickettsial antigen cannot be related to any particular group of population nor interpreted totally as cross reactivity with R. conorii. Our data show a wide distribution of R. conorii and C. burnetii antigens in Salamanca Province, and also indicate the presence of R. typhi antigens in this area.
Collapse
Affiliation(s)
- R Ruiz-Beltrán
- Department of Medicine, University Hospital, Salamanca, Spain
| | | | | | | |
Collapse
|
24
|
|
25
|
|
26
|
Halle S, Dasch GA. Use of a sensitive microplate enzyme-linked immunosorbent assay in a retrospective serological analysis of a laboratory population at risk to infection with typhus group rickettsiae. J Clin Microbiol 1980; 12:343-50. [PMID: 6783677 PMCID: PMC273588 DOI: 10.1128/jcm.12.3.343-350.1980] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A microplate enzyme-linked immunosorbent assay (ELISA), developed for the detection of antibodies to typhus group rickettsiae, was used to analyze human sera from individuals engaged directly or indirectly in rickettsial research. The earliest serum available from each of 112 individuals was tested for immunoglobulin M (IgM) and IgG antibodies against Rickettsia typhi and Rickettsia prowazekii by ELISA at a 1:500 dilution. In at least one assay, nine sera had ELISA optical densities of greater than 0.2, which were above the mean optical densities plus three standard deviations of the other 103 sera. Three of the positive sera were from individuals with known clinical cases of typhus infection. The other sera with predominantly IgG titers were from individuals with extended laboratory exposure to rickettsiae or histories of typhus vaccination, or both. During continued serological surveillance, eight additional people with repeated occupational exposure to typhus rickettsiae had seroconversions in the ELISA to optical densities of greater than 0.2. No apparent clinical illness occurred in two individuals, whereas six clinical cases of infection occurred in others subsequent to accidental laboratory autoinoculation (one) or aerosol exposures (five). In the clinical infections, antibodies were first detected at 7 days, but in subsequent sera, rises and declines in titers were quite variable and were influenced by vaccination, relapse, and time and extent of antibiotic therapy. In primary infections the sera of several individuals who received immediate antibiotic therapy had brief strong IgM responses without pronounced increases in IgG. In contrast, much higher IgG levels were attained in three cases in which relapse occurred, the individual had previously been immunized, or treatment had been delayed. The microplate ELISA proved to be a highly sensitive and reliable test for detection of the human serological response to typhus antigens.
Collapse
|
27
|
Walker DH, Crawford CG, Cain BG. Rickettsial infection of the pulmonary microcirculation: the basis for interstitial pneumonitis in Rocky Mountain spotted fever. Hum Pathol 1980; 11:263-72. [PMID: 6772542 DOI: 10.1016/s0046-8177(80)80008-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pulmonary tissue from 10 patients with fatal Rocky Mountain spotted fever was examined by brightfield microscopy for histopathologic lesions and by immunofluorescence for Rickettsia rickettsii. The distribution of rickettsiae and the vasculitis of the pulmonary microcirculation coincided. The lungs demonstrated the consequent interstitial pneumonia--alveolar septal congestion and interstitial edema; alveolar edema, fibrin, macrophages, and hemorrhage; and interlobular septal edema. The effects of the rickettsial damage to the pulmonary microcirculation are an important component of the pathophysiology of severe Rocky Mountain spotted fever. The distribution of rickettsial organisms within the lung indicates that person to person aerosol transmission is extremely unlikely.
Collapse
|
28
|
Bourgeois AL, Dasch GA, Strong DM. In vitro stimulation of human peripheral blood lymphocytes by soluble and membrane fractions of renografin-purified typhus group rickettsiae. Infect Immun 1980; 27:483-91. [PMID: 6769803 PMCID: PMC550791 DOI: 10.1128/iai.27.2.483-491.1980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cell-free extracts of disrupted Renografin-purified Rickettsia typhi and R. prowazekii were evaluated as antigens in lymphocyte transformation assays for cell-mediated immunity to typhus group rickettsiae in 19 individuals with and 9 without histories of exposure to these organisms. Exposure consisted of clinical disease, vaccination with epidemic typhus vaccine, or occupational exposure to these agents. Both the soluble and membrane fractions of disrupted purified rickettsiae were used, and transformation of peripheral blood lymphocytes (PBL) was determined in microcultures by incorporation of [(3)]thymidine. Of the antigen concentrations tested (1 to 400 mug/ml), 10mug/ml appeared to be the most satisfactory. At this concentration, PBL transformation was highly reproducible and correlated well with donor exposure and the presence of enzyme-linked immunosorbent assay anti-typhus group immunoglobulin G. At higher concentrations, PBL from both exposed and control donors often responded to a lipopolysaccharide-like component present in these preparations. Specific transformation responses to rickettsial fractions were detected in several individuals decades after infection or vaccination, indicating that both fractions contained antigens associated with persisting cell-mediated immunity in humans. Generally, stimulation indexes with the soluble fraction were slightly greater than those obtained with corresponding concentrations of the membrane preparation, and in three individuals transformation was observed only with the soluble fraction. PBL transformation to soluble fractions also appeared to have some species specificity, since PBL from individuals with documented R. typhi infections were more responsive to the homologous soluble preparation than to the soluble fraction of R. prowazekii. PBL transformation also correlated well with homologous but only poorly with heterologous enzyme-linked immunosorbent assay immunoglobulin G titers.
Collapse
|
29
|
Ascher MS, Andron LA. Transfer factor in vitro: nonspecificity of components that enhance lymphocyte proliferation to antigen. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1979; 12:72-81. [PMID: 84724 DOI: 10.1016/0090-1229(79)90112-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Oster CN, Kenyon RH, Pedersen CE. Suppression of cellular immune responses in guinea pigs infected with spotted fever group rickettsiae. Infect Immun 1978; 22:411-7. [PMID: 730362 PMCID: PMC422171 DOI: 10.1128/iai.22.2.411-417.1978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Using a guinea pig model, we demonstrated that infections with pathogenic species of spotted fever group rickettsiae transiently and nonspecifically suppress established cellular immune responses as measured by in vitro lymphocyte transformation and in vivo delayed cutaneous hypersensitivity responses to unrelated, nonrickettsial antigens. The correlation of the duration of this immunosuppression with the virulence of the infecting rickettsial species suggests that this suppression is a pathological effect of the rickettsial infection. Although we did not specifically study the mechanism of this suppression, it is not associated with either lymphocytopenia or leukocytosis.
Collapse
|
31
|
D'Anagelo LJ, Winkler WG. Rocky mountain spotted fever. N Engl J Med 1978; 298:54. [PMID: 618455 DOI: 10.1056/nejm197801052980118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|