1
|
Tabibzadeh N, Klein M, Try M, Poupon J, Houillier P, Klein C, Cheval L, Crambert G, Lasaad S, Chevillard L, Megarbane B. Low exposition to lithium prevents nephrogenic diabetes insipidus but not microcystic dilations of the collecting ducts in long-term rat model. Arch Pharm (Weinheim) 2024; 357:e2400063. [PMID: 38704748 DOI: 10.1002/ardp.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Lithium induces nephrogenic diabetes insipidus (NDI) and microcystic chronic kidney disease (CKD). As previous clinical studies suggest that NDI is dose-dependent and CKD is time-dependent, we investigated the effect of low exposition to lithium in a long-term experimental rat model. Rats were fed with a normal diet (control group), with the addition of lithium (Li+ group), or with lithium and amiloride (Li+/Ami group) for 6 months, allowing obtaining low plasma lithium concentrations (0.25 ± 0.06 and 0.43 ± 0.16 mmol/L, respectively). Exposition to low concentrations of plasma lithium levels prevented NDI but not microcystic dilations of kidney tubules, which were identified as collecting ducts (CDs) on immunofluorescent staining. Both hypertrophy, characterized by an increase in the ratio of nuclei per tubular area, and microcystic dilations were observed. The ratio between principal cells and intercalated cells was higher in microcystic than in hypertrophied tubules. There was no correlation between AQP2 messenger RNA levels and cellular remodeling of the CD. Additional amiloride treatment in the Li+/Ami group did not allow consistent morphometric and cellular composition changes compared to the Li+ group. Low exposition to lithium prevented overt NDI but not microcystic dilations of the CD, with differential cellular composition in hypertrophied and microcystic CDs, suggesting different underlying cellular mechanisms.
Collapse
MESH Headings
- Animals
- Diabetes Insipidus, Nephrogenic/chemically induced
- Diabetes Insipidus, Nephrogenic/prevention & control
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/pathology
- Kidney Tubules, Collecting/metabolism
- Male
- Rats
- Aquaporin 2/metabolism
- Amiloride/pharmacology
- Disease Models, Animal
- Rats, Wistar
- Time Factors
- Renal Insufficiency, Chronic/prevention & control
- Renal Insufficiency, Chronic/chemically induced
- Lithium/pharmacology
- Dose-Response Relationship, Drug
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
| | - Mathieu Klein
- Inserm UMRS-1144, Université Paris Cité, Paris, France
| | - Mélanie Try
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
| | - Joël Poupon
- Department of Biological Toxicology, AP-HP, Lariboisière Hospital, University Paris VII, Paris, France
| | - Pascal Houillier
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
| | - Christophe Klein
- Centre d'Histologie, d'Imagerie et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Lydie Cheval
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
| | - Samia Lasaad
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
| | | | - Bruno Megarbane
- Inserm UMRS-1144, Université Paris Cité, Paris, France
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Federation of Toxicology, APHP, Paris, France
| |
Collapse
|
2
|
Gitlin M, Bauer M. Key questions on the long term renal effects of lithium: a review of pertinent data. Int J Bipolar Disord 2023; 11:35. [PMID: 37971552 PMCID: PMC10654310 DOI: 10.1186/s40345-023-00316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
For over half a century, it has been widely known that lithium is the most efficacious maintenance treatment for bipolar disorder. Despite thorough research on the long-term effects of lithium on renal function, a number of important questions relevant to clinical practice remain. The risk of polyuria, reflecting renal tubular dysfunction, is seen in a substantial proportion of patients treated with long term lithium therapy. The duration of lithium may be the most important risk factor for lithium-induced polyuria. Most, but not all, studies find that lithium is associated with higher rates of chronic kidney disease compared to either age matched controls or patients treated with other mood stabilizers. Age, duration of lithium therapy and medical disorders such as hypertension and diabetes mellitus are risk factors for chronic kidney disease in lithium-treated patients. The relationship between polyuria and chronic kidney disease is inconsistent but poorly studied. Although not all studies agree, it is likely that lithium may increase the risk for end stage renal disease but in a very small proportion of treated patients. Patients whose renal function is relatively preserved will show either no progression or improvement of renal function after lithium discontinuation. In contrast, patients with more renal damage frequently show continued deterioration of renal function even after lithium discontinuation. Optimal management of lithium treatment requires obtaining a baseline measure of renal function (typically estimated glomerular filtration rate [eGFR]) and regular monitoring of eGFR during treatment. Should the eGFR fall rapidly or below 60 ml/minute, patients should consider a consultation with a nephrologist. A decision as to whether lithium should be discontinued due to progressive renal insufficiency should be made using a risk/benefit analysis that takes into account other potential etiologies of renal dysfunction, current renal function, and the efficacy of lithium in that individual patient.
Collapse
Affiliation(s)
- Michael Gitlin
- Department of Psychiatry and Biobehavioral Sciences, The Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
3
|
Patel N, Patel D, Farouk SS, Rein JL. Salt and Water: A Review of Hypernatremia. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:102-109. [PMID: 36868726 DOI: 10.1053/j.akdh.2022.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 03/05/2023]
Abstract
Serum sodium disorders are generally a marker of water balance in the body. Thus, hypernatremia is most often caused by an overall deficit of total body water. Other unique circumstances may lead to excess salt, without an impact on the body's total water volume. Hypernatremia is commonly acquired in both the hospital and community. As hypernatremia is associated with increased morbidity and mortality, treatment should be initiated promptly. In this review, we will discuss the pathophysiology and management of the main types of hypernatremia, which can be categorized as either a loss of water or gain of sodium that can be mediated by renal or extrarenal mechanisms.
Collapse
Affiliation(s)
- Niralee Patel
- Division of Nephrology and Hypertension, Department of Medicine, University of Cincinnati, Cincinnati, OH
| | - Dhwanil Patel
- Division of Nephrology, Overlook Medical Center, Summit, NJ
| | - Samira S Farouk
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joshua L Rein
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
4
|
Boivin E, Le Daré B, Bellay R, Vigneau C, Mercerolle M, Bacle A. Long-term lithium therapy and risk of chronic kidney disease, hyperparathyroidism and hypercalcemia: a cohort study. Int J Bipolar Disord 2023; 11:4. [PMID: 36709463 PMCID: PMC9884717 DOI: 10.1186/s40345-023-00286-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/06/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Lithium is well recognized as the first-line maintenance treatment for bipolar disorder (BD). However, besides therapeutic benefits attributed to lithium therapy, the associated side effects including endocrinological and renal disorders constitute important parameters in prescribing patterns and patient adherence. The objectives of this study is to (i) determine whether long-term lithium therapy is associated with a decrease in renal function, hyperparathyroidism and hypercalcemia and (ii) identify risk factors for lithium-induced chronic kidney disease (CKD). METHODS We conducted a single-centered cohort study of adult patients (≥ 18 years) treated with lithium, who were enrolled at Rennes University Hospital in France between January 1, 2018 and June 1, 2020. Required data were collected from the patient's medical records: demographics characteristics (age, sex, body mass index), biologic parameters (GFR, lithium blood level, PTH and calcium), medical comorbidities (hypertension and diabetes), lithium treatment duration and dosage, and length of hospitalization. RESULTS A total of 248 patients were included (mean age: 60.2 ± 16.5 years). Duration of lithium treatment correlated with (i) deterioration of renal function estimated at - 2.9 mL/min/year (p < 0.0001) and (ii) the development of hyperparathyroidism (p < 0.01) and hypercalcemia (p < 0.01). We also noted that patients with lithium blood level > 0.8 mEq/mL had significantly lower GFR than patients with lithium blood level < 0.8 mEq/mL (61.8 mL/min versus 77.6 mL/min, respectively, p = 0.0134). Neither diabetes mellitus nor hypertension was associated with more rapid deterioration of renal function. CONCLUSION This study suggests that the duration of lithium treatment contribute to the deterioration of renal function, raising the question of reducing dosages in patients with a GFR < 60 mL/min. Overdoses has been identified as a risk factor for CKD, emphasizing the importance of regular re-evaluation of the lithium dose regimen. Also, long-term lithium therapy was associated with hyperparathyroidism and hypercalcemia. Particular vigilance is required on these points in order to limit the occurrence of endocrinological and renal lithium adverse effects.
Collapse
Affiliation(s)
- Elise Boivin
- grid.411154.40000 0001 2175 0984Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, 35000 Rennes, France
| | - Brendan Le Daré
- grid.411154.40000 0001 2175 0984Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, 35000 Rennes, France ,grid.410368.80000 0001 2191 9284Institut NuMeCan (Nutrition, Metabolismes et Cancer), Réseau PREVITOX, INSERM, INRAE, Université de Rennes 1, Rennes, France
| | - Romain Bellay
- grid.488406.60000 0000 9139 4930Service Pharmacie, Centre Hospitalier Guillaume Regnier, Rennes, France
| | - Cécile Vigneau
- grid.414271.5Service de Néphrologie, Centre Hospitalier Universitaire Pontchaillou, Rennes, France
| | - Marion Mercerolle
- grid.411154.40000 0001 2175 0984Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, 35000 Rennes, France
| | - Astrid Bacle
- grid.411154.40000 0001 2175 0984Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, 35000 Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CHU Rennes, INSERM, EHESP, Irset-UMR_S 1085, 35000 Rennes, France
| |
Collapse
|
5
|
Dutta A, Das M. Deciphering the Role of Aquaporins in Metabolic Diseases: A Mini Review. Am J Med Sci 2022; 364:148-162. [DOI: 10.1016/j.amjms.2021.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 06/16/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022]
|
6
|
Safety and Efficacy of Combined Low-Dose Lithium and Low-Dose Aspirin: A Pharmacological and Behavioral Proof-of-Concept Study in Rats. Pharmaceutics 2021; 13:pharmaceutics13111827. [PMID: 34834241 PMCID: PMC8619680 DOI: 10.3390/pharmaceutics13111827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Despite established efficacy in bipolar disorder patients, lithium (Li) therapy has serious side effects, particularly chronic kidney disease. We examined the safety and behavioral effects of combined chronic low-dose aspirin plus low-dose Li in rats to explore the toxicity and therapeutic potential of this treatment. Rats were fed regular or Li-containing food (0.1% [low-dose, LLD-Li] or 0.2% [standard-dose, STD-Li]) for six weeks. Low-dose aspirin (1 mg/kg) was administered alone or together with Li. Renal function and gastric mucosal integrity were assessed. The effects of the combination treatment were evaluated in depression-like and anxiety-like behavioral models. Co-treatment with aspirin did not alter plasma Li levels. Chronic STD-Li treatment resulted in significant polyuria and polydipsia, elevated blood levels of creatinine and cystatin C, and increased levels of kidney nephrin and podocin—all suggestive of impaired renal function. Aspirin co-treatment significantly damped STD-Li-induced impairments in kidney parameters. There were no gastric ulcers or blood loss in any treatment group. Combined aspirin and LLD-Li resulted in a significant increase in sucrose consumption, and in the time spent in the open arms of an elevated plus-maze compared with the LLD-Li only group, suggestive of antidepressant-like and anxiolytic-like effects, respectively. Thus, we demonstrate that low-dose aspirin mitigated the typical renal side effects of STD-Li dose and enhanced the beneficial behavioral effects of LLD-Li therapy without aggravating its toxicity.
Collapse
|
7
|
Fotso Soh J, Beaulieu S, Trepiccione F, Linnaranta O, Torres-Platas G, Platt RW, Renaud S, Su CL, Mucsi I, D'Apolito L, Mulsant BH, Levinson A, Saury S, Müller D, Schaffer A, Dols A, Low N, Cervantes P, Christensen BM, Herrmann N, Rajji T, Rej S. A double-blind, randomized, placebo-controlled pilot trial of atorvastatin for nephrogenic diabetes insipidus in lithium users. Bipolar Disord 2021; 23:66-75. [PMID: 32621644 DOI: 10.1111/bdi.12973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Lithium remains an important treatment for mood disorders but is associated with kidney disease. Nephrogenic diabetes insipidus (NDI) is associated with up to 3-fold risk of incident chronic kidney disease among lithium users. There are limited randomized controlled trials (RCT) for treatments of lithium-induced NDI, and existing therapies can be poorly tolerated. Therefore, novel treatments are needed for lithium-induced NDI. METHOD We conducted a 12-week double-blind pilot RCT to assess the feasibility and efficacy of 20 mg/d atorvastatin vs placebo in the treatment of NDI in chronic lithium users. Patients, recruited between September 2017 and October 2018, were aged 18 to 85, currently on a stable dose of lithium, and determined to have NDI. RESULTS Urinary osmolality (UOsm) at 12 weeks adjusted for baseline was not statistically different between groups (+39.6 mOsm/kg [95% CI, -35.3, 114.5] in atorvastatin compared to placebo groups). Secondary outcomes of fluid intake and aquaporin-2 excretions at 12 weeks adjusted for baseline were -0.13 L [95% CI, -0.54, 0.28] and 98.68 [95% CI, -190.34, 387.70], respectively. A moderate effect size was observed for improvements in baseline UOsm by ≥100 mOsm/kg at 12 weeks in patients who received atorvastatin compared to placebo (38.45% (10/26) vs 22.58% (7/31); Cohen's d = 0.66). CONCLUSION Among lithium users with NDI, atorvastatin 20 mg/d did not significantly improve urinary osmolality compared to placebo over a 12-week period. Larger confirmatory trials with longer follow-up periods may help to further assess the effects of statins on NDI, especially within patients with more severe NDI.
Collapse
Affiliation(s)
- Jocelyn Fotso Soh
- Geri-PARTy Research Group, Jewish General Hospital, Montreal, QC, Canada.,Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Serge Beaulieu
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | | | - Outi Linnaranta
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | | | - Robert W Platt
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University Health Centre, Montreal, QC, Canada
| | - Suzane Renaud
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Chien-Lin Su
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University Health Centre, Montreal, QC, Canada
| | - Istvan Mucsi
- Division of Nephrology, University Health Network, University of Toronto (UofT), Toronto, ON, Canada
| | - Luciano D'Apolito
- Biogem S.c.a.r.l., Istituto di Ricerche Genetiche "Gaetano Salvatore", Ariano Irpino, Italy
| | - Benoit H Mulsant
- Department of Psychiatry, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Andrea Levinson
- Department of Psychiatry, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sybille Saury
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Daniel Müller
- Department of Psychiatry, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ayal Schaffer
- Department of Psychiatry, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Annemiek Dols
- Amsterdam UMC, Department of Psychiatry, GGZinGeest, Neuroscience, Amsterdam, The Netherlands
| | - Nancy Low
- Department of Psychiatry, McGill University Health Centre, Montreal, QC, Canada
| | - Pablo Cervantes
- Department of Psychiatry, McGill University Health Centre, Montreal, QC, Canada
| | | | - Nathan Herrmann
- Department of Psychiatry, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Tarek Rajji
- Department of Psychiatry, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Soham Rej
- Geri-PARTy Research Group, Jewish General Hospital, Montreal, QC, Canada.,Douglas Mental Health University Institute, Montreal, QC, Canada
| |
Collapse
|
8
|
Abstract
Lithium is one of the most effective mood stabilisers for people with a mood disorder. However, many of these patients are also taking other medicines that could potentially interact with lithium To minimise the risk of relapse, it is usually necessary to maintain the lithium serum concentration between 0.6 mmol/L and 0.8 mmol/L Lithium clearance is easily influenced by drugs that alter renal function such as ACE inhibitors, angiotensin receptor antagonists, diuretics, and non-steroidal anti-inflammatory drugs It is therefore prudent for prescribers to monitor and adjust the lithium dose to avoid adverse effects or loss of efficacy
Collapse
Affiliation(s)
- Gin S Malhi
- Discipline of Psychiatry, Northern Clinical School, University of Sydney.,Department of Academic Psychiatry, Northern Sydney Local Health District.,CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District
| | - Erica Bell
- Discipline of Psychiatry, Northern Clinical School, University of Sydney.,Department of Academic Psychiatry, Northern Sydney Local Health District.,CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District
| | - Tim Outhred
- Discipline of Psychiatry, Northern Clinical School, University of Sydney.,Department of Academic Psychiatry, Northern Sydney Local Health District.,CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District
| | - Michael Berk
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Vic.,Department of Psychiatry, University of Melbourne, Royal Melbourne Hospital.,Florey Institute for Neuroscience and Mental Health, University of Melbourne.,Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne
| |
Collapse
|
9
|
Systematic review and practical guideline for the prevention and management of the renal side effects of lithium therapy. Eur Neuropsychopharmacol 2020; 31:16-32. [PMID: 31837914 DOI: 10.1016/j.euroneuro.2019.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/10/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Lithium is the first line therapy of bipolar mood disorder. Lithium-induced nephrogenic diabetes insipidus (Li-NDI) and lithium nephropathy (Li-NP, i.e., renal insufficiency) are prevalent side effects of lithium therapy, with significant morbidity. The objective of this systematic review is to provide an overview of preventive and management strategies for Li-NDI and Li-NP. For this, the PRISMA guideline for systematic reviews was used. Papers on the prevention and/or treatment of Li-NDI or Li-NP, and (influenceable) risk factors for development of Li-NDI or Li-NP were included. We found that the amount of evidence on prevention and treatment of Li-NDI and Li-NP is scarce. To prevent Li-NDI and Li-NP we advise to use a once-daily dosing schedule, target the lowest serum lithium level that is effective and prevent lithium intoxication. We emphasize the importance of monitoring for Li-NDI and Li-NP, as early diagnosis and treatment can prevent further progression and permanent damage. Collaboration between psychiatrist, nephrologist and patients themselves is essential. In patients with Li-NDI and/or Li-NP cessation of lithium therapy and/or switch to another mood stabilizer should be considered. In patients with Li-NDI, off label therapy with amiloride can be useful.
Collapse
|
10
|
de Groot T, Ebert LK, Christensen BM, Andralojc K, Cheval L, Doucet A, Mao C, Baumgarten R, Low BE, Sandhoff R, Wiles MV, Deen PMT, Korstanje R. Identification of Acer2 as a First Susceptibility Gene for Lithium-Induced Nephrogenic Diabetes Insipidus in Mice. J Am Soc Nephrol 2019; 30:2322-2336. [PMID: 31558682 DOI: 10.1681/asn.2018050549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lithium, mainstay treatment for bipolar disorder, causes nephrogenic diabetes insipidus and hypercalcemia in about 20% and 10% of patients, respectively, and may lead to acidosis. These adverse effects develop in only a subset of patients treated with lithium, suggesting genetic factors play a role. METHODS To identify susceptibility genes for lithium-induced adverse effects, we performed a genome-wide association study in mice, which develop such effects faster than humans. On day 8 and 10 after assigning female mice from 29 different inbred strains to normal chow or lithium diet (40 mmol/kg), we housed the animals for 48 hours in metabolic cages for urine collection. We also collected blood samples. RESULTS In 17 strains, lithium treatment significantly elevated urine production, whereas the other 12 strains were not affected. Increased urine production strongly correlated with lower urine osmolality and elevated water intake. Lithium caused acidosis only in one mouse strain, whereas hypercalcemia was found in four strains. Lithium effects on blood pH or ionized calcium did not correlate with effects on urine production. Using genome-wide association analyses, we identified eight gene-containing loci, including a locus containing Acer2, which encodes a ceramidase and is specifically expressed in the collecting duct. Knockout of Acer2 led to increased susceptibility for lithium-induced diabetes insipidus development. CONCLUSIONS We demonstrate that genome-wide association studies in mice can be used successfully to identify susceptibility genes for development of lithium-induced adverse effects. We identified Acer2 as a first susceptibility gene for lithium-induced diabetes insipidus in mice.
Collapse
Affiliation(s)
- Theun de Groot
- The Jackson Laboratory, Bar Harbor, Maine.,Departments of Physiology.,Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Lena K Ebert
- The Jackson Laboratory, Bar Harbor, Maine.,Departments of Physiology.,Department II of Internal Medicine, Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Karolina Andralojc
- Molecular Biology.,Biochemistry, and.,Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lydie Cheval
- Cordeliers Research Center, Sorbonne University, Pierre and Marie Curie University Paris 06, INSERM (Institut National de la Santé et de la Recherche Médicale), Paris Descartes University, Sorbonne Paris Cité, UMR_S (Unité Mixte de Recherche en Sciences) 1138, Paris, France.,Physiology of Renal and Tubulopathies, CNRS (Centre National de la Recherche Scientifique) ERL 8228, Cordeliers Research Center, INSERM, Sorbonne University, Sorbonne Paris Cité University, Paris Descartes University, Paris Diderot University, Paris, France
| | - Alain Doucet
- Cordeliers Research Center, Sorbonne University, Pierre and Marie Curie University Paris 06, INSERM (Institut National de la Santé et de la Recherche Médicale), Paris Descartes University, Sorbonne Paris Cité, UMR_S (Unité Mixte de Recherche en Sciences) 1138, Paris, France
| | - Cungui Mao
- Department of Medicine, Stony Brook University, Stony Brook, New York.,Stony Brook Cancer Center, Stony Brook, New York
| | | | | | - Roger Sandhoff
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany; and.,Centre for Applied Sciences at Technical Universities (ZAFH)-Applied Biomedical Mass Spectrometry (ABIMAS), Mannheim, Germany
| | | | | | | |
Collapse
|
11
|
Abstract
Diabetes insipidus (DI) is a disorder characterized by excretion of large amounts of hypotonic urine. Central DI results from a deficiency of the hormone arginine vasopressin (AVP) in the pituitary gland or the hypothalamus, whereas nephrogenic DI results from resistance to AVP in the kidneys. Central and nephrogenic DI are usually acquired, but genetic causes must be evaluated, especially if symptoms occur in early childhood. Central or nephrogenic DI must be differentiated from primary polydipsia, which involves excessive intake of large amounts of water despite normal AVP secretion and action. Primary polydipsia is most common in psychiatric patients and health enthusiasts but the polydipsia in a small subgroup of patients seems to be due to an abnormally low thirst threshold, a condition termed dipsogenic DI. Distinguishing between the different types of DI can be challenging and is done either by a water deprivation test or by hypertonic saline stimulation together with copeptin (or AVP) measurement. Furthermore, a detailed medical history, physical examination and imaging studies are needed to ensure an accurate DI diagnosis. Treatment of DI or primary polydipsia depends on the underlying aetiology and differs in central DI, nephrogenic DI and primary polydipsia.
Collapse
|
12
|
Firth J, Siddiqi N, Koyanagi A, Siskind D, Rosenbaum S, Galletly C, Allan S, Caneo C, Carney R, Carvalho AF, Chatterton ML, Correll CU, Curtis J, Gaughran F, Heald A, Hoare E, Jackson SE, Kisely S, Lovell K, Maj M, McGorry PD, Mihalopoulos C, Myles H, O'Donoghue B, Pillinger T, Sarris J, Schuch FB, Shiers D, Smith L, Solmi M, Suetani S, Taylor J, Teasdale SB, Thornicroft G, Torous J, Usherwood T, Vancampfort D, Veronese N, Ward PB, Yung AR, Killackey E, Stubbs B. The Lancet Psychiatry Commission: a blueprint for protecting physical health in people with mental illness. Lancet Psychiatry 2019; 6:675-712. [PMID: 31324560 DOI: 10.1016/s2215-0366(19)30132-4] [Citation(s) in RCA: 764] [Impact Index Per Article: 152.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Joseph Firth
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia; Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia.
| | - Najma Siddiqi
- Department of Health Sciences, University of York, Hull York Medical School, Bradford, UK; Bradford District Care NHS Foundation Trust, Bradford, UK
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Universitat de Barcelona, Fundació Sant Joan de Déu, Barcelona, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Dan Siskind
- Metro South Addiction and Mental Health Service, Brisbane, QLD, Australia; School of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Simon Rosenbaum
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Cherrie Galletly
- Ramsay Health Care Mental Health, Adelaide, SA, Australia; Northern Adelaide Local Health Network, Adelaide, SA, Australia; Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Stephanie Allan
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Constanza Caneo
- Departamento de Psiquiatría, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rebekah Carney
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Youth Mental Health Research Unit, Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Andre F Carvalho
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Mary Lou Chatterton
- Deakin Health Economics, Institute for Health Transformation, Faculty of Health, Deakin University, Melbourne, VIC, Australia
| | - Christoph U Correll
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Psychiatry, Zucker Hillside Hospital, Glen Oaks, NY, USA; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - Jackie Curtis
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Keeping the Body in Mind Program, South Eastern Sydney Local Health District, Sydney, NSW, Australia
| | - Fiona Gaughran
- South London and Maudsley NHS Foundation Trust, London, UK; Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Adrian Heald
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Department of Diabetes and Endocrinology, Salford Royal Hospital, Salford, UK
| | - Erin Hoare
- Food and Mood Centre, Deakin University, Melbourne, VIC, Australia
| | - Sarah E Jackson
- Department of Behavioural Science and Health, University College London, London, UK
| | - Steve Kisely
- School of Medicine, University of Queensland, Brisbane, QLD, Australia; Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Karina Lovell
- Division of Nursing, Midwifery and Social Work, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Mario Maj
- Department of Psychiatry, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Patrick D McGorry
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Cathrine Mihalopoulos
- Deakin Health Economics, Institute for Health Transformation, Faculty of Health, Deakin University, Melbourne, VIC, Australia
| | - Hannah Myles
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, Australia
| | - Brian O'Donoghue
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Toby Pillinger
- South London and Maudsley NHS Foundation Trust, London, UK; Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Medical Research Council London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Jerome Sarris
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia; Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia; The Melbourne Clinic, Melbourne, VIC, Australia
| | - Felipe B Schuch
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil
| | - David Shiers
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Psychosis Research Unit, Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK
| | - Lee Smith
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Marco Solmi
- Neurosciences Department and Padua Neuroscience Centre, University of Padua, Padua, Italy
| | - Shuichi Suetani
- Metro South Addiction and Mental Health Service, Brisbane, QLD, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia; Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - Johanna Taylor
- Department of Health Sciences, University of York, Hull York Medical School, Bradford, UK
| | - Scott B Teasdale
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Keeping the Body in Mind Program, South Eastern Sydney Local Health District, Sydney, NSW, Australia
| | - Graham Thornicroft
- Centre for Global Mental Health, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - John Torous
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tim Usherwood
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia; Department of General Practice, Westmead Clinical School, University of Sydney, Westmead, NSW, Australia
| | - Davy Vancampfort
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium; University Psychiatric Centre, Katholieke Universiteit Leuven, Kortenberg, Belgium
| | - Nicola Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy
| | - Philip B Ward
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Schizophrenia Research Unit, Ingham Institute of Applied Medical Research, Liverpool, NSW, Australia
| | - Alison R Yung
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Eoin Killackey
- Centre for Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Brendon Stubbs
- South London and Maudsley NHS Foundation Trust, London, UK; Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
13
|
Abstract
Objectives:
Lithium-treated patients with polyuria are at increased risk of lithium toxicity. We aimed to describe the clinical benefits and risks of different management strategies for polyuria in community lithium-treated patients.
Methods:
This is a naturalistic, observational, prospective 12-month cohort study of lithium-treated patients with polyuria attending a community mental health service in Dublin, Ireland. When polyuria was detected, management changed in one of four ways: (a) no pharmacological change; (b) lithium dose decrease; (c) lithium substitution; or (d) addition of amiloride.
Results:
Thirty-four participants were diagnosed with polyuria and completed prospective data over 12 months. Mean 24-hour urine volume decreased from 4852 to 4344 ml (p = 0.038). Mean early morning urine osmolality decreased from 343 to 338 mOsm/kg (p = 0.823). Mean 24-hour urine volume decreased with each type of intervention but did not attain statistical significance for any individual intervention group. Mean early morning urine osmolality decreased in participants with no pharmacological change and increased in participants who received a change in medication but these changes did not attain statistical significance. Only participants who discontinued lithium demonstrated potentially clinically significant changes in urine volume (mean decrease 747 ml in 24 hours) and early morning urine osmolality (mean increase 31 mOsm/kg) although this was not definitively proven, possibly owing to power issues.
Conclusions:
Managing polyuria by decreasing lithium dose does not appear to substantially improve objective measures of renal tubular dysfunction, whereas substituting lithium may do so. Studies with larger numbers and longer follow-up would clarify these relationships.
Collapse
|
14
|
García-Maldonado G, Castro-García RDJ. Endocrinological Disorders Related to the Medical Use of Lithium. A Narrative Review. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2019; 48:35-43. [PMID: 30651171 DOI: 10.1016/j.rcp.2017.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/04/2017] [Indexed: 11/19/2022]
Abstract
The prescribing of Lithium is common in psychiatric clinical practice. The aim of this study was to identify the most common endocrine side effects associated with this drug and to clarify the pathophysiological basis. A systematic review was conducted in Psycinfo, Embase, PubMed, and Scopus. A computerised search for information was performed using a PICO (patient, intervention, comparative, outcomes) strategy. The main neuroendocrine alterations were reported in kidneys, thyroid and parathyroid glands, pancreas, and the communication pathways between the pituitary and adrenal glands. The pathophysiological mechanisms are diverse, and include the inhibition of the thyroid adenylate cyclase sensitive to the thyroid stimulant hormone (TSH) sensitive adenylate cyclase, which causes hypothyroidism. It also reduces the expression of aquaporin type 2, which is associated with nephrogenic diabetes insipidus, and the loss of the ionic balance of calcium that induces hyperparathyroidism and hypercalcaemia. Other considerations are related to alterations in the hypothalamic-pituitary-adrenal axis and a decrease in the production of catecholamines. Finally, another side-effect is the glycaemic dysregulation caused by the insulin resistance. Periodical clinical and para-clinical evaluations are necessary. The author proposes an evaluation scheme.
Collapse
Affiliation(s)
- Gerardo García-Maldonado
- Hospital Psiquiátrico de Tampico, Secretaría de Salud, Tamaulipas, México; Facultad de Medicina Dr. Alberto Romo Caballero, Universidad Autónoma de Tamaulipas, Tamaulipas, México.
| | | |
Collapse
|
15
|
Abstract
Besides its efficiency, lithium has a narrow therapeutic index and can result in considerable toxicity. Among the potential side effects, two types of renal toxicity are observed: a decreased renal concentrating ability and a chronic renal failure. Lithium-induced polyuria is frequent, estimated to affect up to 40% of patients, and develops usually early. It may be irreversible, especially if the treatment has been prescribed for more than 15 years. A chronic renal failure is observed in patients treated for more than 10 to 20 years. Its prevalence is estimated at 12% after 19 years of treatment. Some patients (0.5%) may reach end stage renal disease. The major risk factor is the duration of exposure to lithium. Discussion about stopping or not lithium in case of renal failure needs multidisciplinary expertise and depends on psychiatric status and renal function.
Collapse
Affiliation(s)
- Aude Servais
- Service de néphrologie adulte, hôpital Necker, université Paris Descartes, 149, rue de Sèvres, 75015 Paris, France.
| |
Collapse
|
16
|
Fotso Soh J, Torres-Platas SG, Beaulieu S, Mantere O, Platt R, Mucsi I, Saury S, Renaud S, Levinson A, Andreazza AC, Mulsant BH, Müller D, Schaffer A, Dols A, Cervantes P, Low NCP, Herrmann N, Christensen BM, Trepiccione F, Rajji T, Rej S. Atorvastatin in the treatment of Lithium-induced nephrogenic diabetes insipidus: the protocol of a randomized controlled trial. BMC Psychiatry 2018; 18:227. [PMID: 30012135 PMCID: PMC6048831 DOI: 10.1186/s12888-018-1793-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/14/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Lithium is the gold-standard treatment for bipolar disorder, is highly effective in treating major depressive disorder, and has anti-suicidal properties. However, clinicians are increasingly avoiding lithium largely due to fears of renal toxicity. Nephrogenic Diabetes Insipidus (NDI) occurs in 15-20% of lithium users and predicts a 2-3 times increased risk of chronic kidney disease (CKD). We recently found that use of statins is associated with lower NDI risk in a cross-sectional study. In this current paper, we describe the methodology of a randomized controlled trial (RCT) to treat lithium-induced NDI using atorvastatin. METHODS We will conduct a 12-week, double-blind placebo-controlled RCT of atorvastatin for lithium-induced NDI at McGill University, Montreal, Canada. We will recruit 60 current lithium users, aged 18-85, who have indicators of NDI, which we defined as urine osmolality (UOsm) < 600 mOsm/kg after 10-h fluid restriction. We will randomize patients to atorvastatin (20 mg/day) or placebo for 12 weeks. We will examine whether this improves measures of NDI: UOsm and aquaporin (AQP2) excretion at 12-week follow-up, adjusted for baseline. RESULTS Not applicable. CONCLUSION The aim of this clinical trial is to provide preliminary data about the efficacy of atorvastatin in treating NDI. If successful, lithium could theoretically be used more safely in patients with a reduced subsequent risk of CKD, hypernatremia, and acute kidney injury (AKI). If future definitive trials confirm this, this could potentially allow more patients to benefit from lithium, while minimizing renal risk. TRIAL REGISTRATION ClinicalTrials.gov NCT02967653 . Registered in February 2017.
Collapse
Affiliation(s)
- Jocelyn Fotso Soh
- Geri-PARTy Research Group, Jewish General Hospital/Lady Davis Institute, McGill University, 4333 Cote Ste-Catherine, Montreal, QC, H3T, 1E4, Montreal, Canada.
| | - Susana G. Torres-Platas
- 0000 0004 1936 8649grid.14709.3bGeri-PARTy Research Group, Jewish General Hospital/Lady Davis Institute, McGill University, 4333 Cote Ste-Catherine, Montreal, QC, H3T, 1E4, Montreal, Canada
| | - Serge Beaulieu
- 0000 0004 1936 8649grid.14709.3bDouglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Canada
| | - Outi Mantere
- 0000 0004 1936 8649grid.14709.3bDouglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Canada
| | - Robert Platt
- 0000 0000 9064 4811grid.63984.30Department of Epidemiology, Biostatistics and Occupational Health, McGill University Health Centre, Montreal, Canada
| | - Istvan Mucsi
- 0000 0001 2157 2938grid.17063.33Division of Nephrology, University Health Network, University of Toronto (UofT), Toronto, Canada
| | - Sybille Saury
- 0000 0004 1936 8649grid.14709.3bDouglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Canada
| | - Suzane Renaud
- 0000 0004 1936 8649grid.14709.3bDouglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Canada
| | - Andrea Levinson
- 0000 0001 2157 2938grid.17063.33Department of Psychiatry, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ana C. Andreazza
- 0000 0001 2157 2938grid.17063.33Department of Psychiatry, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Benoit H. Mulsant
- 0000 0001 2157 2938grid.17063.33Department of Psychiatry, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Daniel Müller
- 0000 0001 2157 2938grid.17063.33Department of Psychiatry, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ayal Schaffer
- 0000 0001 2157 2938grid.17063.33Department of Psychiatry, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Annemiek Dols
- Department of Psychiatry, GGZ, Geest, Amsterdam, the Netherlands
| | - Pablo Cervantes
- 0000 0000 9064 4811grid.63984.30Department of Psychiatry, McGill University Health Centre, Montreal, Canada
| | - Nancy CP Low
- 0000 0000 9064 4811grid.63984.30Department of Psychiatry, McGill University Health Centre, Montreal, Canada
| | - Nathan Herrmann
- 0000 0001 2157 2938grid.17063.33Department of Psychiatry, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Birgitte M. Christensen
- 0000 0001 1956 2722grid.7048.bDepartment of Biomedicine, University of Aarhus, Aarhus, Denmark
| | - Francesco Trepiccione
- 0000 0001 0790 385Xgrid.4691.aDivision of Nephrology, University of Naples, Naples, Italy
| | - Tarek Rajji
- 0000 0001 2157 2938grid.17063.33Department of Psychiatry, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Soham Rej
- 0000 0004 1936 8649grid.14709.3bGeri-PARTy Research Group, Jewish General Hospital/Lady Davis Institute, McGill University, 4333 Cote Ste-Catherine, Montreal, QC, H3T, 1E4, Montreal, Canada ,0000 0004 1936 8649grid.14709.3bDouglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
17
|
Kalita-De Croft P, Bedford JJ, Leader JP, Walker RJ. Amiloride modifies the progression of lithium-induced renal interstitial fibrosis. Nephrology (Carlton) 2017; 23:20-30. [DOI: 10.1111/nep.12929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/07/2016] [Accepted: 09/25/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Priyakshi Kalita-De Croft
- Departments of Medicine; University of Otago; Dunedin New Zealand
- Departments of Physiology; University of Otago; Dunedin New Zealand
- Molecular Breast Pathology University of Queensland Centre for Clinical Research (UQCCR) Herston QLD; Australia
| | | | - John P Leader
- Departments of Medicine; University of Otago; Dunedin New Zealand
| | - Robert J Walker
- Departments of Medicine; University of Otago; Dunedin New Zealand
| |
Collapse
|
18
|
Abstract
Lithium has been used for the management of psychiatric illnesses for over 50 years and it continues to be regarded as a first-line agent for the treatment and prevention of bipolar disorder. Lithium possesses a narrow therapeutic index and comparatively minor alterations in plasma concentrations can have significant clinical sequelae. Several drug classes have been implicated in the development of lithium toxicity over the years, including diuretics and non-steroidal anti-inflammatory compounds, but much of the anecdotal and experimental evidence supporting these interactions is dated, and many newer medications and medication classes have been introduced during the intervening years. This review is intended to provide an update on the accumulated evidence documenting potential interactions with lithium, with a focus on pharmacokinetic insights gained within the last two decades. The clinical relevance and ramifications of these interactions are discussed.
Collapse
Affiliation(s)
- Patrick R Finley
- School of Pharmacy, University of California at San Francisco, 3333 California Street, Box 0613, San Francisco, CA, 94143-0613, USA.
| |
Collapse
|
19
|
Khan MI, Dellinger RP, Waguespack SG. Electrolyte Disturbances in Critically Ill Cancer Patients: An Endocrine Perspective. J Intensive Care Med 2017; 33:147-158. [PMID: 28535742 DOI: 10.1177/0885066617706650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Electrolyte disturbances are frequently encountered in critically ill oncology patients. Hyponatremia and hypernatremia as well as hypocalcemia and hypercalcemia are among the most commonly encountered electrolyte abnormalities. In the intensive care unit, management of critical electrolyte disturbances is focused on initial evaluation and immediate treatment plan to prevent severe complications. A PubMed search was performed to identify best available evidence for evaluation and management of dysnatremias, hypocalcemia, and hypercalcemia. Current literature was reviewed regarding the management of electrolyte disturbances. The role of new therapeutic options, for example, vaptans for hyponatremia, teriparatide for hypocalcemia, and denosumab for hypercalcemia, is discussed. Early diagnosis and appropriate management are expected to reduce adverse outcomes.
Collapse
Affiliation(s)
- Maryam I Khan
- 1 Division of Endocrinology, Diabetes and Metabolism, Cooper University Health Care, Camden, NJ, USA
| | - R Phillip Dellinger
- 2 Division of Critical Care Medicine, Cooper University Health Care, Camden, NJ, USA
| | - Steven G Waguespack
- 3 Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
20
|
Bhasin B, Velez JCQ. Evaluation of Polyuria: The Roles of Solute Loading and Water Diuresis. Am J Kidney Dis 2016; 67:507-11. [DOI: 10.1053/j.ajkd.2015.10.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/06/2015] [Indexed: 11/11/2022]
|
21
|
Abstract
Antihypertensive agents are commonly prescribed by physicians to prevent the long-term mortality from chronic hypertension. They are also given to improve survival in a number of conditions (eg, heart failure, coronary artery disease), independent of the effect on blood pressure. Several classes of antihypertensives are available with unique pharmacologic characteristics and adverse effects. Not all agents in the same class have identical effects, and careful selection of drugs based on the comorbid conditions is recommended.
Collapse
|
22
|
Abstract
Hypernatremia is defined as a serum sodium level above 145 mmol/L. It is a frequently encountered electrolyte disturbance in the hospital setting, with an unappreciated high mortality. Understanding hypernatremia requires a comprehension of body fluid compartments, as well as concepts of the preservation of normal body water balance. The human body maintains a normal osmolality between 280 and 295 mOsm/kg via Arginine Vasopressin (AVP), thirst, and the renal response to AVP; dysfunction of all three of these factors can cause hypernatremia. We review new developments in the pathophysiology of hypernatremia, in addition to the differential diagnosis and management of this important electrolyte disorder.
Collapse
Affiliation(s)
- Saif A Muhsin
- Renal Division, Brigham and Women's Hospital, Boston, MA, USA
| | - David B Mount
- Renal Division, Brigham and Women's Hospital, Boston, MA, USA; Veterans Affairs Boston Healthcare System, Boston, MA, USA.
| |
Collapse
|
23
|
Alsady M, Baumgarten R, Deen PMT, de Groot T. Lithium in the Kidney: Friend and Foe? J Am Soc Nephrol 2015; 27:1587-95. [PMID: 26577775 DOI: 10.1681/asn.2015080907] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Trace amounts of lithium are essential for our physical and mental health, and administration of lithium has improved the quality of life of millions of patients with bipolar disorder for >60 years. However, in a substantial number of patients with bipolar disorder, long-term lithium therapy comes at the cost of severe renal side effects, including nephrogenic diabetes insipidus and rarely, ESRD. Although the mechanisms underlying the lithium-induced renal pathologies are becoming clearer, several recent animal studies revealed that short-term administration of lower amounts of lithium prevents different forms of experimental AKI. In this review, we discuss the knowledge of the pathologic and therapeutic effects of lithium in the kidney. Furthermore, we discuss the underlying mechanisms of these seemingly paradoxical effects of lithium, in which fine-tuned regulation of glycogen synthase kinase type 3, a prime target for lithium, seems to be key. The new discoveries regarding the protective effect of lithium against AKI in rodents call for follow-up studies in humans and suggest that long-term therapy with low lithium concentrations could be beneficial in CKD.
Collapse
Affiliation(s)
- Mohammad Alsady
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | | | - Peter M T Deen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | - Theun de Groot
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; and
| |
Collapse
|
24
|
de Groot T, Sinke AP, Kortenoeven MLA, Alsady M, Baumgarten R, Devuyst O, Loffing J, Wetzels JF, Deen PMT. Acetazolamide Attenuates Lithium-Induced Nephrogenic Diabetes Insipidus. J Am Soc Nephrol 2015; 27:2082-91. [PMID: 26574046 DOI: 10.1681/asn.2015070796] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/30/2015] [Indexed: 12/27/2022] Open
Abstract
To reduce lithium-induced nephrogenic diabetes insipidus (lithium-NDI), patients with bipolar disorder are treated with thiazide and amiloride, which are thought to induce antidiuresis by a compensatory increase in prourine uptake in proximal tubules. However, thiazides induced antidiuresis and alkalinized the urine in lithium-NDI mice lacking the sodium-chloride cotransporter, suggesting that inhibition of carbonic anhydrases (CAs) confers the beneficial thiazide effect. Therefore, we tested the effect of the CA-specific blocker acetazolamide in lithium-NDI. In collecting duct (mpkCCD) cells, acetazolamide reduced the cellular lithium content and attenuated lithium-induced downregulation of aquaporin-2 through a mechanism different from that of amiloride. Treatment of lithium-NDI mice with acetazolamide or thiazide/amiloride induced similar antidiuresis and increased urine osmolality and aquaporin-2 abundance. Thiazide/amiloride-treated mice showed hyponatremia, hyperkalemia, hypercalcemia, metabolic acidosis, and increased serum lithium concentrations, adverse effects previously observed in patients but not in acetazolamide-treated mice in this study. Furthermore, acetazolamide treatment reduced inulin clearance and cortical expression of sodium/hydrogen exchanger 3 and attenuated the increased expression of urinary PGE2 observed in lithium-NDI mice. These results show that the antidiuresis with acetazolamide was partially caused by a tubular-glomerular feedback response and reduced GFR. The tubular-glomerular feedback response and/or direct effect on collecting duct principal or intercalated cells may underlie the reduced urinary PGE2 levels with acetazolamide, thereby contributing to the attenuation of lithium-NDI. In conclusion, CA activity contributes to lithium-NDI development, and acetazolamide attenuates lithium-NDI development in mice similar to thiazide/amiloride but with fewer adverse effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Olivier Devuyst
- Institute of Physiology, Zurich Centre for Integrative Human Physiology, Zurich, Switzerland; and
| | | | - Jack F Wetzels
- Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
25
|
Bockenhauer D, Bichet DG. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat Rev Nephrol 2015; 11:576-88. [PMID: 26077742 DOI: 10.1038/nrneph.2015.89] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Healthy kidneys maintain fluid and electrolyte homoeostasis by adjusting urine volume and composition according to physiological needs. The final urine composition is determined in the last tubular segment: the collecting duct. Water permeability in the collecting duct is regulated by arginine vasopressin (AVP). Secretion of AVP from the neurohypophysis is regulated by a complex signalling network that involves osmosensors, barosensors and volume sensors. AVP facilitates aquaporin (AQP)-mediated water reabsorption via activation of the vasopressin V2 receptor (AVPR2) in the collecting duct, thus enabling concentration of urine. In nephrogenic diabetes insipidus (NDI), inability of the kidneys to respond to AVP results in functional AQP deficiency. Consequently, affected patients have constant diuresis, resulting in large volumes of dilute urine. Primary forms of NDI result from mutations in the genes that encode the key proteins AVPR2 and AQP2, whereas secondary forms are associated with biochemical abnormalities, obstructive uropathy or the use of certain medications, particularly lithium. Treatment of the disease is informed by identification of the underlying cause. Here we review the clinical aspects and diagnosis of NDI, the various aetiologies, current treatment options and potential future developments.
Collapse
Affiliation(s)
- Detlef Bockenhauer
- University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Daniel G Bichet
- Departments of Medicine and Molecular and Integrative Physiology, Université de Montréal Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin Ouest, Montréal, QC H4J 1C5 Canada
| |
Collapse
|
26
|
Bonfrate L, Procino G, Wang DQH, Svelto M, Portincasa P. A novel therapeutic effect of statins on nephrogenic diabetes insipidus. J Cell Mol Med 2015; 19:265-82. [PMID: 25594563 PMCID: PMC4407600 DOI: 10.1111/jcmm.12422] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022] Open
Abstract
Statins competitively inhibit hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase, resulting in reduced plasma total and low-density lipoprotein cholesterol levels. Recently, it has been shown that statins exert additional ‘pleiotropic’ effects by increasing expression levels of the membrane water channels aquaporin 2 (AQP2). AQP2 is localized mainly in the kidney and plays a critical role in determining cellular water content. This additional effect is independent of cholesterol homoeostasis, and depends on depletion of mevalonate-derived intermediates of sterol synthetic pathways, i.e. farnesylpyrophosphate and geranylgeranylpyrophosphate. By up-regulating the expression levels of AQP2, statins increase water reabsorption by the kidney, thus opening up a new avenue in treating patients with nephrogenic diabetes insipidus (NDI), a hereditary disease that yet lacks high-powered and limited side effects therapy. Aspects related to water balance determined by AQP2 in the kidney, as well as standard and novel therapeutic strategies of NDI are discussed.
Collapse
Affiliation(s)
- Leonilde Bonfrate
- Department of Biomedical Sciences and Human Oncology, Internal Medicine, University Medical School, Bari, Italy
| | | | | | | | | |
Collapse
|
27
|
Chronic Kidney Disease in Lithium-Treated Older Adults: A Review of Epidemiology, Mechanisms, and Implications for the Treatment of Late-Life Mood Disorders. Drugs Aging 2014; 32:31-42. [DOI: 10.1007/s40266-014-0234-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Qureshi S, Galiveeti S, Bichet DG, Roth J. Diabetes insipidus: celebrating a century of vasopressin therapy. Endocrinology 2014; 155:4605-21. [PMID: 25211589 DOI: 10.1210/en.2014-1385] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diabetes mellitus, widely known to the ancients for polyuria and glycosuria, budded off diabetes insipidus (DI) about 200 years ago, based on the glucose-free polyuria that characterized a subset of patients. In the late 19th century, clinicians identified the posterior pituitary as the site of pathology, and pharmacologists found multiple bioactivities there. Early in the 20th century, the amelioration of the polyuria with extracts of the posterior pituitary inaugurated a new era in therapy and advanced the hypothesis that DI was due to a hormone deficiency. Decades later, a subset of patients with polyuria unresponsive to therapy were recognized, leading to the distinction between central DI and nephrogenic DI, an early example of a hormone-resistant condition. Recognition that the posterior pituitary had 2 hormones was followed by du Vigneaud's Nobel Prize winning isolation, sequencing, and chemical synthesis of oxytocin and vasopressin. The pure hormones accelerated the development of bioassays and immunoassays that confirmed the hormone deficiency in vasopressin-sensitive DI and abundant levels of hormone in patients with the nephrogenic disorder. With both forms of the disease, acquired and inborn defects were recognized. Emerging concepts of receptors and of genetic analysis led to the recognition of patients with mutations in the genes for 1) arginine vasopressin (AVP), 2) the AVP receptor 2 (AVPR2), and 3) the aquaporin 2 water channel (AQP2). We recount here the multiple skeins of clinical and laboratory research that intersected frequently over the centuries since the first recognition of DI.
Collapse
Affiliation(s)
- Sana Qureshi
- Laboratory of Diabetes and Diabetes-Related Disorders (S.Q., S.G., J.R.), Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York 11030; Albert Einstein College of Medicine (S.Q., J.R.), Yeshiva University, Bronx, New York 10461; James J Peters VA Medical Center (S.G.), Mount Sinai Medical Center Health System, Bronx, New York 10029; Hôpital du Sacré-Coeur de Montréal (D.G.B.), Groupe des Protéines Membranaires, Université de Montréal, Montréal, Québec, Canada H4J IC5; and Hofstra North Shore-Long Island Jewish School of Medicine (J.R.), North Shore-Long Island Jewish Health System, Hempstead, New York 11549
| | | | | | | |
Collapse
|
29
|
Rej S, Segal M, Low NCP, Mucsi I, Holcroft C, Shulman K, Looper K. The McGill Geriatric Lithium-Induced Diabetes Insipidus Clinical Study (McGLIDICS). CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2014; 59:327-34. [PMID: 25007407 PMCID: PMC4079152 DOI: 10.1177/070674371405900606] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/01/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Despite being a common and potentially serious condition, nephrogenic diabetes insipidus (NDI) remains poorly understood in older lithium users. Our main objective was to compare the prevalence of NDI symptoms and decreased urine osmolality ([UOsm] < 300 milli-Osmoles [mOsm/kg]) among geriatric and adult lithium users. We also assessed NDI symptoms, serum sodium (Na+), and urine specific gravity (USG) as possible surrogate measures of decreased UOsm, and ascertained whether potential etiologic factors independently correlated with decreased UOsm. METHOD This was a cross-sectional study of 100 consecutive outpatients treated with lithium from 6 tertiary care clinics, of which 45 were geriatric (aged 65 years and older) and 55 adult (aged 18 to 64 years). Patients completed a symptom questionnaire and underwent laboratory tests, including UOsm, serum Na+, and USG. RESULTS Geriatric and adult lithium users had similar rates of decreased UOsm (12.5%, compared with 17.9%, P = 0.74), but geriatric patients reported less symptoms (P < 0.05). Although UOsm did not correlate with symptoms or current serum Na+, USG of less than 1.010 was suggestive of UOsm of less than 300 mOsm/kg. Age, lithium duration, and serum lithium level were independently associated with UOsm. CONCLUSIONS The prevalence of decreased UOsm is similar in geriatric and adult lithium users, but older patients are less likely to report urinary and thirst symptoms. Although subjective symptoms do not correlate with UOsm, USG may be a cost-efficient clinical surrogate measure for UOsm. We suggest clinicians increase their vigilance for decreased UOsm, especially in lithium users with advanced age, longer duration of lithium exposure, and higher lithium levels. This may potentially prevent lithium intoxication, falls, hypernatremic events, and renal dysfunction.
Collapse
Affiliation(s)
- Soham Rej
- Resident, Department of Psychiatry, McGill University, Montreal, Quebec
| | - Marilyn Segal
- Assistant Professor, Division of Geriatric Psychiatry, Department of Psychiatry, Jewish General Hospital, McGill University, Montreal, Quebec
| | - Nancy C P Low
- Assistant Professor, Division of Mood Disorders Psychiatry, Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Quebec
| | - Istvan Mucsi
- Associate Professor, Division of Nephrology, Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Quebec
| | | | - Kenneth Shulman
- Professor, Division of Geriatric Psychiatry, Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario
| | - Karl Looper
- Associate Professor, Division of Consult-Liaison Psychiatry, Department of Psychiatry, Jewish General Hospital, McGill University, Montreal, Quebec
| |
Collapse
|
30
|
Kortenoeven MLA, Fenton RA. Renal aquaporins and water balance disorders. Biochim Biophys Acta Gen Subj 2013; 1840:1533-49. [PMID: 24342488 DOI: 10.1016/j.bbagen.2013.12.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/26/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Aquaporins (AQPs) are a family of proteins that can act as water channels. Regulation of AQPs is critical to osmoregulation and the maintenance of body water homeostasis. Eight AQPs are expressed in the kidney of which five have been shown to play a role in body water balance; AQP1, AQP2, AQP3, AQP4 and AQP7. AQP2 in particular is regulated by vasopressin. SCOPE OF REVIEW This review summarizes our current knowledge of the underlying mechanisms of various water balance disorders and their treatment strategies. MAJOR CONCLUSIONS Dysfunctions of AQPs are involved in disorders associated with disturbed water homeostasis. Hyponatremia with increased AQP levels can be caused by diseases with low effective circulating blood volume, such as congestive heart failure, or osmoregulation disorders such as the syndrome of inappropriate secretion of antidiuretic hormone. Treatment consists of fluid restriction, demeclocycline and vasopressin type-2 receptor antagonists. Decreased AQP levels can lead to diabetes insipidus (DI), characterized by polyuria and polydipsia. In central DI, vasopressin production is impaired, while in gestational DI, levels of the vasopressin-degrading enzyme vasopressinase are abnormally increased. Treatment consists of the vasopressin analogue dDAVP. Nephrogenic DI is caused by the inability of the kidney to respond to vasopressin and can be congenital, but is most commonly acquired, usually due to lithium therapy. Treatment consists of sufficient fluid supply, low-solute diet and diuretics. GENERAL SIGNIFICANCE In recent years, our understanding of the underlying mechanisms of water balance disorders has increased enormously, which has opened up several possible new treatment strategies. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Marleen L A Kortenoeven
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark.
| |
Collapse
|
31
|
Leo JR, Farrell HM, Friedman R. Lithium-Induced Nephrogenic Diabetes Insipidus After Gastric Banding. PSYCHOSOMATICS 2013; 54:200-4. [DOI: 10.1016/j.psym.2012.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 11/26/2022]
|
32
|
Rej S, Herrmann N, Shulman K. The effects of lithium on renal function in older adults--a systematic review. J Geriatr Psychiatry Neurol 2012; 25:51-61. [PMID: 22467847 DOI: 10.1177/0891988712436690] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic renal failure (CRF) and nephrogenic diabetes insipidus (NDI) are potential consequences of chronic lithium use, while acute renal failure (ARF) has been described in lithium intoxication. We performed a systematic review of all studies pertaining to the effects of lithium on the kidney in older adults. The ARF incidence was 1.5% per person-year and concurrent loop diuretic and angiotensin-converting enzyme inhibitor use with lithium increased the risk. The CRF prevalence estimates varied from 1.2% to 34%, with risk factors including age, previous lithium intoxication, polyuria, previously impaired renal function, and decreased maximal urine osmolality. The prevalence of NDI varied widely from 1.8% to 85%. Risk factors included lithium duration, dose, level, slow-release formulation, and clinical nonresponse. Except for amiloride use in NDI, there is little evidence for treatment of other lithium-induced adverse renal effects. Currently, there is no compelling evidence to suggest that lithium should be avoided in elderly patients for fear of renal side effects.
Collapse
Affiliation(s)
- Soham Rej
- Psychiatry Resident, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
33
|
Abstract
INTRODUCTION Despite more that 60 years of clinical experience, the effective use of lithium for the treatment of mood disorder, in particular bipolarity, is in danger of becoming obsolete. In part, this is because of exaggerated fears surrounding lithium toxicity, acute and long-term tolerability and the encumbrance of life-long plasma monitoring. Recent research has once again positioned lithium centre stage and amplified the importance of understanding its science and how this translates to clinical practice. OBJECTIVE The aim of this paper is to provide a sound knowledge base as regards the science and practice of lithium therapy. METHOD A comprehensive literature search using electronic databases was conducted along with a detailed review of articles known to the authors pertaining to the use of lithium. Studies were limited to English publications and those dealing with the management of psychiatric disorders in humans. The literature was synthesized and organized according to relevance to clinical practice and understanding. RESULTS Lithium has simple pharmacokinetics that require regular dosing and monitoring. Its mechanisms of action are complex and its effects are multi-faceted, extending beyond mood stability to neuroprotective and anti-suicidal properties. Its use in bipolar disorder is under-appreciated, particularly as it has the best evidence for prophylaxis, qualifying it perhaps as the only true mood stabilizer currently available. In practice, its risks and tolerability are exaggerated and can be readily minimized with knowledge of its clinical profile and judicious application. CONCLUSION Lithium is a safe and effective agent that should, whenever indicated, be used first-line for the treatment of bipolar disorder. A better understanding of its science alongside strategic management of its plasma levels will ensure both wider utility and improved outcomes.
Collapse
Affiliation(s)
- Gin S Malhi
- CADE Clinic, Department of Psychiatry, Royal North Shore Hospital, Sydney, Australia.
| | | | | | | |
Collapse
|
34
|
Effets rénaux aigus et chroniques du lithium. MEDECINE INTENSIVE REANIMATION 2011. [DOI: 10.1007/s13546-011-0299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Kortenoeven MLA, Schweer H, Cox R, Wetzels JFM, Deen PMT. Lithium reduces aquaporin-2 transcription independent of prostaglandins. Am J Physiol Cell Physiol 2011; 302:C131-40. [PMID: 21881002 DOI: 10.1152/ajpcell.00197.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vasopressin (AVP)-stimulated translocation and transcription of aquaporin-2 (AQP2) water channels in renal principal cells is essential for urine concentration. Twenty percent of patients treated with lithium develop nephrogenic diabetes insipidus (NDI), a disorder in which the kidney is unable to concentrate urine. In vivo and in mouse collecting duct (mpkCCD) cells, lithium treatment coincides with decreased AQP2 abundance and inactivation of glycogen synthase kinase (Gsk) 3β. This is paralleled in vivo by an increased renal cyclooxygenase 2 (COX-2) expression and urinary prostaglandin PGE(2) excretion. PGE(2) reduces AVP-stimulated water reabsorption, but its precise role in lithium-induced downregulation of AQP2 is unclear. Using mpkCCD cells, we here investigated whether prostaglandins contribute to lithium-induced downregulation of AQP2. In these cells, lithium application reduced AQP2 abundance, which coincided with Gsk3β inactivation and increased COX-2 expression. Inhibition of COX by indomethacin, leading to reduced PGE(2) and PGF(2α) levels, or dexamethasone-induced downregulation of COX-2 both increased AQP2 abundance, while PGE(2) addition reduced AQP2 abundance. However, lithium did not change the prostaglandin levels, and indomethacin and dexamethasone did not prevent lithium-induced AQP2 downregulation. Further analysis revealed that lithium decreased AQP2 protein abundance, mRNA levels and transcription, while PGE(2) reduced AQP2 abundance by increasing its lysosomal degradation, but not by reducing AQP2 gene transcription. In conclusion, our data reveal that in mpkCCD cells, prostaglandins decrease AQP2 protein stability by increasing its lysosomal degradation, indicating that in vivo paracrine-produced prostaglandins might have a role in lithium-induced NDI via this mechanism. However, lithium affects also AQP2 gene transcription, which is prostaglandin independent.
Collapse
|
36
|
Abstract
BACKGROUND Lithium has long been recognised for its mood-stabilizing effects in the management of bipolar disorder (BD) but in practice its use has been limited because of real and 'imagined' concerns. This article addresses the need for lithium to be measured with respect to its clinical and functional effects. It introduces a visual scale, termed lithiumeter, which captures the optimal lithium plasma levels for the treatment of BD. METHODS Key words pertaining to lithium's administration, dosing, and side effects as well as its efficacy in acute and long-term treatment of BD were used to conduct an electronic search of the literature. Relevant articles were identified by the authors and reviewed. RESULTS This paper outlines the considerations necessary prior to initiating lithium therapy and provides a guide to monitoring lithium plasma levels. Current recommendations for optimal plasma lithium levels in the management of BD are then discussed with respect to indications for use in the acute phases of the illness and maintenance therapy. The risks associated with lithium treatment are also discussed. CONCLUSIONS The lithiumeter provides a practical guide of optimal lithium levels for the clinical management of BD.
Collapse
Affiliation(s)
- Gin S Malhi
- CADE Clinic, Department of Psychiatry, Royal North Shore Hospital, University of Miami, Miller School of Medicine, Miami, FL, USA.
| | | | | |
Collapse
|
37
|
Christensen BM, Zuber AM, Loffing J, Stehle JC, Deen PMT, Rossier BC, Hummler E. alphaENaC-mediated lithium absorption promotes nephrogenic diabetes insipidus. J Am Soc Nephrol 2010; 22:253-61. [PMID: 21051735 DOI: 10.1681/asn.2010070734] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Lithium-induced nephrogenic diabetes insipidus (NDI) is accompanied by polyuria, downregulation of aquaporin 2 (AQP2), and cellular remodeling of the collecting duct (CD). The amiloride-sensitive epithelial sodium channel (ENaC) is a likely candidate for lithium entry. Here, we subjected transgenic mice lacking αENaC specifically in the CD (knockout [KO] mice) and littermate controls to chronic lithium treatment. In contrast to control mice, KO mice did not markedly increase their water intake. Furthermore, KO mice did not demonstrate the polyuria and reduction in urine osmolality induced by lithium treatment in the control mice. Lithium treatment reduced AQP2 protein levels in the cortex/outer medulla and inner medulla (IM) of control mice but only partially reduced AQP2 levels in the IM of KO mice. Furthermore, lithium induced expression of H(+)-ATPase in the IM of control mice but not KO mice. In conclusion, the absence of functional ENaC in the CD protects mice from lithium-induced NDI. These data support the hypothesis that ENaC-mediated lithium entry into the CD principal cells contributes to the pathogenesis of lithium-induced NDI.
Collapse
Affiliation(s)
- Birgitte Mønster Christensen
- Water and Salt Research Center, Department of Anatomy, Aarhus University, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Lithium is widely used to treat bipolar disorder. Nephrogenic diabetes insipidus (NDI) is the most common adverse effect of lithium and occurs in up to 40% of patients. Renal lithium toxicity is characterized by increased water and sodium diuresis, which can result in mild dehydration, hyperchloremic metabolic acidosis and renal tubular acidosis. The concentrating defect and natriuretic effect develop within weeks of lithium initiation. After years of lithium exposure, full-blown nephropathy can develop, which is characterized by decreased glomerular filtration rate and chronic kidney disease. Here, we review the clinical and experimental evidence that the principal cell of the collecting duct is the primary target for the nephrotoxic effects of lithium, and that these effects are characterized by dysregulation of aquaporin 2. This dysregulation is believed to occur as a result of the accumulation of cytotoxic concentrations of lithium, which enters via the epithelial sodium channel (ENaC) on the apical membrane and leads to the inhibition of signaling pathways that involve glycogen synthase kinase type 3beta. Experimental and clinical evidence demonstrates the efficacy of the ENaC inhibitor amiloride for the treatment of lithium-induced NDI; however, whether this agent can prevent the long-term adverse effects of lithium is not yet known.
Collapse
Affiliation(s)
- Jean-Pierre Grünfeld
- Department of Nephrology, Necker Hospital, Université Paris Descartes, Paris, France.
| | | |
Collapse
|
39
|
Liamis G, Milionis HJ, Elisaf M. A review of drug-induced hypernatraemia. NDT Plus 2009; 2:339-46. [PMID: 25949338 PMCID: PMC4421386 DOI: 10.1093/ndtplus/sfp085] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 06/23/2009] [Indexed: 01/07/2023] Open
Abstract
Drug-induced electrolyte abnormalities have been increasingly reported and may be associated with considerable morbidity and/or mortality. In clinical practice, hypernatraemia (serum sodium higher than 145 mmol/L) is usually of multifactorial aetiology and drug therapy not infrequently is disregarded as a contributing factor for increased serum sodium concentration. Strategies to prevent this adverse drug effect involve careful consideration of risk factors and clinical and laboratory evaluation in the course of treatment. Herein, we review evidence-based information via PubMed and EMBASE and the relevant literature implicating pharmacologic treatment as an established cause of hypernatraemia and discuss its incidence and the underlying pathophysiologic mechanisms.
Collapse
Affiliation(s)
- George Liamis
- Department of Internal Medicine, School of Medicine , University of Ioannina , Ioannina , Greece
| | - Haralampos J Milionis
- Department of Internal Medicine, School of Medicine , University of Ioannina , Ioannina , Greece
| | - Moses Elisaf
- Department of Internal Medicine, School of Medicine , University of Ioannina , Ioannina , Greece
| |
Collapse
|
40
|
Kortenoeven MLA, Li Y, Shaw S, Gaeggeler HP, Rossier BC, Wetzels JFM, Deen PMT. Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int 2009; 76:44-53. [PMID: 19367330 DOI: 10.1038/ki.2009.91] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lithium therapy frequently induces nephrogenic diabetes insipidus; amiloride appears to prevent its occurrence in some clinical cases. Amiloride blocks the epithelial sodium channel (ENaC) located in the apical membrane of principal cells; hence one possibility is that ENaC is the main entry site for lithium and the beneficial effect of amiloride may be through inhibiting lithium entry. Using a mouse collecting duct cell line, we found that vasopressin caused an increase in Aquaporin 2 (AQP2) expression which was reduced by clinically relevant lithium concentrations similar to what is seen with in vivo models of this disease. Further amiloride or benzamil administration prevented this lithium-induced downregulation of AQP2. Amiloride reduced transcellular lithium transport, intracellular lithium concentration, and lithium-induced inactivation of glycogen synthase kinase 3beta. Treatment of rats with lithium downregulated AQP2 expression, reduced the principal-to-intercalated cell ratio, and caused polyuria, while simultaneous administration of amiloride attenuated all these changes. These results show that ENaC is the major entry site for lithium in principal cells both in vitro and in vivo. Blocking lithium entry with amiloride attenuates lithium-induced diabetes insipidus, thus providing a rationale for its use in treating this disorder.
Collapse
Affiliation(s)
- Marleen L A Kortenoeven
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Bedford JJ, Weggery S, Ellis G, McDonald FJ, Joyce PR, Leader JP, Walker RJ. Lithium-induced nephrogenic diabetes insipidus: renal effects of amiloride. Clin J Am Soc Nephrol 2008; 3:1324-31. [PMID: 18596116 DOI: 10.2215/cjn.01640408] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Polyuria, polydipsia, and nephrogenic diabetes insipidus have been associated with use of psychotropic medications, especially lithium. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS The impact of psychotropic medications on urinary concentrating ability and urinary aquaporin 2 (AQP2) excretion was investigated after overnight fluid deprivation, and over 6 h after 40 microg of desmopressin (dDAVP), in patients on lithium (n = 45), compared with those on alternate psychotropic medications (n = 42). RESULTS Those not on lithium demonstrated normal urinary concentrating ability (958 +/- 51 mOsm/kg) and increased urinary excretion of AQP2 (98 +/- 21 fmol/micromol creatinine) and cAMP (410 +/- 15 pmol/micromol creatinine). Participants taking lithium were divided into tertiles according to urinary concentrating ability: normal, >750 mOsm/kg; partial nephrogenic diabetes insipidus (NDI), 750 to 300 mOsm/kg; full NDI, <300 mOsm/kg. Urinary AQP2 concentrations were 70.9 +/- 13.6 fmol/micromol creatinine (normal), 76.5 +/- 10.4 fmol/micromol creatinine (partial NDI), and 27.3 fmol/micromol creatinine (full NDI). Impaired urinary concentrating ability and reduced urinary AQP2, cAMP excretion correlated with duration of lithium therapy. Other psychotropic agents did not impair urinary concentrating ability. Eleven patients on lithium were enrolled in a randomized placebo-controlled crossover trial investigating the actions of amiloride (10 mg daily for 6 wk) on dDAVP-stimulated urinary concentrating ability and AQP2 excretion. Amiloride increased maximal urinary osmolality and AQP2 excretion. CONCLUSIONS By inference, amiloride-induced reduction of lithium uptake in the principal cells of the collecting duct improves responsiveness to AVP-stimulated translocation of AQP2 to the apical membrane of the principal cells.
Collapse
Affiliation(s)
- Jennifer J Bedford
- Department of Medical & Surgical Sciences, University of Otago, PO Box 913, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
42
|
Bedford JJ, Leader JP, Jing R, Walker LJ, Klein JD, Sands JM, Walker RJ. Amiloride restores renal medullary osmolytes in lithium-induced nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 2008; 294:F812-20. [DOI: 10.1152/ajprenal.00554.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In lithium-induced nephrogenic diabetes insipidus (NDI), alterations in renal medullary osmolyte concentrations have been assumed but never investigated. Amiloride can modify lithium-induced NDI, but the impact of amiloride in lithium-induced NDI on renal medullary osmolytes, aquaporins, and urea transporters is unknown and is the basis of this study. Rats fed lithium (60 mmol/kg dry food) over 4 wk developed NDI. Urine osmolality fell to 287 ± 19 mosmol/kgH2O (controls 1,211 ± 90 mosmol/kgH2O). Organic osmolytes in the renal medulla showed significant decreases compared with controls [inositol 221 ± 35 to 85 ± 10 mmol/kg protein; sorbitol 35 ± 9 to 3 ± 1 mmol/kg protein; glycerophosphorylcholine (GPC) 352 ± 80 to 91 ± 20 mmol/kg protein; and glycine betaine 69 ± 11 to 38 ± 38 mmol/kg protein]. Medullary urea content fell from 2,868 ± 624 to 480 ± 117 mmol/kg protein. Concurrent administration of amiloride (0.2 mmol/l) in the drinking water restored urine osmolality (1,132 ± 154 mosmol/kgH2O), and reduced urine volume. Medullary osmolyte content were restored to control values (inositol, 232 ± 12; sorbitol 32 ± 6; GPC, 244 ± 26; glycine betaine, 84 ± 5 mmol/kg protein). Medullary urea rose to 2,122 ± 305 mmol/kg protein. Reduced AQP2, AQP3, and urea transporter (UT-A1) expression was significantly reversed following amiloride therapy. Data presented here provide further understanding of how amiloride may substantially restore the lithium-induced impaired renal concentrating mechanism.
Collapse
|
43
|
Alexander MP, Farag YMK, Mittal BV, Rennke HG, Singh AK. Lithium toxicity: a double-edged sword. Kidney Int 2007; 73:233-7. [PMID: 17943083 DOI: 10.1038/sj.ki.5002578] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M P Alexander
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
44
|
Vergnaud E, Baudin O, Desachy A. Une prise en charge périopératoire « usuelle » peut conduire à un coma hyperosmolaire chez les patients traités par lithium. ACTA ACUST UNITED AC 2007; 26:168-70. [PMID: 17174064 DOI: 10.1016/j.annfar.2006.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 11/06/2006] [Indexed: 11/19/2022]
Abstract
A 55-year-old woman with bipolar disorder who had been taking lithium for several years developed hyperosmolar coma following osteosynthesis of a hip fracture. The coma was attributed to decompensation of undiagnosed nephrogenic diabetes insipidus due to chronic lithium intake. The lengthy perioperative fasting and large fluid loading (necessitated by the anesthetic technique) led to acute hypernatremia. Closer monitoring and a different anesthetic strategy might have avoided this classical complication of chronic lithium therapy. The patient recovered after symptomatic treatment. We discuss the perioperative management of patients taking (or having taken) lithium, based on a review of the literature.
Collapse
Affiliation(s)
- E Vergnaud
- Service de réanimation polyvalente, centre hospitalier d'Angoulême, hôpital Girac, 16470 Saint-Michel, France
| | | | | |
Collapse
|
45
|
Abstract
Nephrogenic diabetes insipidus (NDI) is defined as the inability of the kidney to concentrate urine owing to the insensitivity of the distal nephron to the antidiuretic hormone, arginine vasopressin. NDI can be either a congenital or an acquired disorder. Acquired NDI most commonly is secondary to drugs such as lithium or metabolic disturbances, such as hypokalemia and hypercalcemia. Disturbance of the aquaporin-2 shuttle is the underlying molecular basis of acquired NDI. NDI is diagnosed with the help of a water-deprivation test. Patients with the disorder will have a urinary osmolality of less than 300 mosm/kg H2O despite water deprivation. On administration of aqueous vasopressin, patients with NDI will show little or no increase in urine osmolality. Therapy consists of identifying and correcting the underlying disorder, or withdrawing the offending drug. Other treatment options that may be beneficial include diuretics, nonsteroidal anti-inflammatory drugs, decreased dietary solute intake, and desmopressin (DDAVP).
Collapse
Affiliation(s)
- Apurv Khanna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA.
| |
Collapse
|
46
|
Xu J, Scholz A, Rösch N, Blume A, Unger T, Kreutz R, Culman J, Gohlke P. Low-dose lithium combined with captopril prevents stroke and improves survival in salt-loaded, stroke-prone spontaneously hypertensive rats. J Hypertens 2006; 23:2277-85. [PMID: 16269970 DOI: 10.1097/01.hjh.0000189868.48290.d8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE A number of potential interactions between angiotensin-converting enzyme inhibitors and lithium have been described in the literature. In the present study, we investigated the effects of a low-dose combination treatment with lithium and captopril on survival and stroke prevention in salt-loaded, stroke-prone spontaneously hypertensive rats (SHRSP). METHODS Eight-week-old saline-drinking SHRSP (n = 21 per group) were treated with vehicle, LiCl (1 mmol/kg per day), captopril (25 mg/kg per day) and captopril plus LiCl for up to 37 weeks. Body weight, salt water intake blood pressure and mortality were recorded throughout the experimental period. Plasma renin activity, plasma lithium concentration and urinary excretion of albumin, sodium and potassium were measured at different time points. RESULTS Captopril treatment doubled the life expectancy when compared with vehicle-treated rats. Lithium alone had minor effects on survival but led to a dramatic increase in survival when added to captopril (mean survival time > 237 versus 147 days, P < 0.001). Systolic blood pressure increased with age in all treatment groups but was comparable in the captopril-treated and the captopril-plus-lithium-treated groups. Plasma renin activity as well as urinary sodium and potassium excretion did not differ between both groups. In the captopril group a striking fivefold increase of albuminuria occurred between 14 and 26 weeks of age, while this progression was completely abolished by the addition of lithium. CONCLUSIONS Our results demonstrate that the addition of lithium to captopril dramatically prolong the effects of the angiotensin-converting enzyme inhibitor on survival in salt-loaded SHRSP. This effect was independent of a reduction in blood pressure.
Collapse
Affiliation(s)
- Jihong Xu
- Institute of Pharmacology, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Jeff M Sands
- Renal Division, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
48
|
Kraft MD, Btaiche IF, Sacks GS, Kudsk KA. Treatment of electrolyte disorders in adult patients in the intensive care unit. Am J Health Syst Pharm 2005; 62:1663-82. [PMID: 16085929 DOI: 10.2146/ajhp040300] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE The treatment of electrolyte disorders in adult patients in the intensive care unit (ICU), including guidelines for correcting specific electrolyte disorders, is reviewed. SUMMARY Electrolytes are involved in many metabolic and homeostatic functions. Electrolyte disorders are common in adult patients in the ICU and have been associated with increased morbidity and mortality, as has the improper treatment of electrolyte disorders. A limited number of prospective, randomized, controlled studies have been conducted evaluating the optimal treatment of electrolyte disorders. Recommendations for treatment of electrolyte disorders in adult patients in the ICU are provided based on these studies, as well as case reports, expert opinion, and clinical experience. The etiologies of and treatments for hyponatremia hypotonic and hypernatremia (hypovolemic, isovolemic, and hypervolemic), hypokalemia and hyperkalemia, hypophosphatemia and hyperphosphatemia, hypocalcemia and hypercalcemia, and hypomagnesemia and hypermagnesemia are discussed, and equations for determining the proper dosages for adult patients in the ICU are provided. Treatment is often empirical, based on published literature, expert recommendations, and the patient's response to the initial treatment. Actual electrolyte correction requires individual adjustment based on the patient's clinical condition and response to therapy. Clinicians should be knowledgeable about electrolyte homeostasis and the underlying pathophysiology of electrolyte disorders in order to provide the optimal therapy to patients. CONCLUSION Treatment of electrolyte disorders is often empirical, based on published literature, expert opinion and recommendations, and patient's response to the initial treatment. Clinicians should be knowledgeable about electrolyte homeostasis and the underlying pathophysiology of electrolyte disorders to provide optimal therapy for patients.
Collapse
Affiliation(s)
- Michael D Kraft
- College of Pharmacy, University of Michigan (UM), Ann Arbor, 48109, USA. mdkraft@umich,edu
| | | | | | | |
Collapse
|
49
|
Sandson NB, Armstrong SC, Cozza KL. An overview of psychotropic drug-drug interactions. PSYCHOSOMATICS 2005; 46:464-94. [PMID: 16145193 DOI: 10.1176/appi.psy.46.5.464] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The psychotropic drug-drug interactions most likely to be relevant to psychiatrists' practices are examined. The metabolism and the enzymatic and P-glycoprotein inhibition/induction profiles of all antidepressants, antipsychotics, and mood stabilizers are described; all clinically meaningful drug-drug interactions between agents in these psychotropic classes, as well as with frequently encountered nonpsychotropic agents, are detailed; and information on the pharmacokinetic/pharmacodynamic results, mechanisms, and clinical consequences of these interactions is presented. Although the range of drug-drug interactions involving psychotropic agents is large, it is a finite and manageable subset of the much larger domain of all possible drug-drug interactions. Sophisticated computer programs will ultimately provide the best means of avoiding drug-drug interactions. Until these programs are developed, the best defense against drug-drug interactions is awareness and focused attention to this issue.
Collapse
Affiliation(s)
- Neil B Sandson
- Division of Education and Residency Training, Sheppard Pratt Health System, Towson, MD, USA
| | | | | |
Collapse
|
50
|
Tran-Van D, Avargues P, Labadie P, Hervé Y, Dardare E, Fontaine B. [Intravenous ketoprofen for severe lithium-induced polyuria]. Presse Med 2005; 34:1137-40. [PMID: 16208259 DOI: 10.1016/s0755-4982(05)84137-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Although lithium has a narrow therapeutic range, it is widely used in psychiatry because of its antipsychotic and antidepressant properties. During long-term treatment, the onset of nephrogenic diabetes insipidus is common, but few cases of severe hypotonic polyuria, which would be an aggravating factor, have been reported. Appropriate treatment in such cases is an open question. CASE We report a case of acute lithium poisoning in a 42-year-old man, due to chronic lithium treatment (plasma lithium=2.6 mmol/L). This patient, admitted to our intensive care unit, presented neurological disorders complicated by the early emergence of severe nephrogenic diabetes insipidus. After perfusion of hypotonic solution and intravenous treatment with ketoprofen (100 mg x 3/24 h), the polyuria improved rapidly. COMMENTS The beneficial action of nonsteroidal antiinflammatory drugs lies in their capacity to inhibit prostaglandin synthesis. Lithium causes excess production of prostaglandins, which decrease the ability of kidneys to reabsorb free water. Some publications report indomethacin to be effective in this case. Because it is available only in oral or rectal forms, however, its effect may be delayed. Our case suggests that intravenous ketoprofen, with its rapid onset of action, is effective in the treatment of severe lithium-induced nephrogenic diabetes insipidus. Rehydration must be strictly monitored because of the risk of renal failure connected with nonsteroidal antiinflammatory drugs.
Collapse
Affiliation(s)
- D Tran-Van
- Département d'anesthésie-réanimation-urgences, HIA Robert Picqué, BP 28, 339898 Bordeaux Armées 33, France.
| | | | | | | | | | | |
Collapse
|