1
|
Pan S, Long S, Cai L, Wen J, Lin W, Chen G. Identification and in vivo functional analysis of a novel missense mutation in GATA3 causing hypoparathyroidism, sensorineural deafness and renal dysplasia syndrome in a Chinese family. Endocrine 2025; 87:1194-1203. [PMID: 39505798 DOI: 10.1007/s12020-024-04087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE Hypoparathyroidism, sensorineural deafness, and renal dysplasia (HDR) syndrome is a rare autosomal dominant genetic disease associated with mutations in the GATA3 gene, which encodes GATA3 that plays essential roles in vertebrate development. This study aimed to identify and report the pathogenic mutation in GATA3 in a Chinese family diagnosed with HDR syndrome and determine its functional impacts in vivo. SUBJECTS AND METHODS The clinical features of a 25-year-old male patient with HDR syndrome and his parents were collected. GATA3 gene exome sequencing and Sanger sequencing were performed on the proband and his family, respectively. Functional analyses of GATA3 were performed using bioinformatics tools and zebrafish assays to determine pathogenicity and phenotype spectrum. RESULTS A novel, heterozygous, missense mutation in exon 4 of the GATA3 gene, c.863 G > A, p.Cys288Tyr, in the proband and his mother who presented the complete HDR triad, was predicted to be deleterious by in silico tools. 3D structure modeling showed that the variant caused significant structural changes. In vivo studies using a zebrafish animal model revealed the deleterious impact of the variant on the gill buds, otoliths, and pronephros. CONCLUSION We identified a novel missense mutation, GATA3 p.Cys288Tyr, within a family with HDR syndrome and delineated it as a loss-of-function variant in vivo. This expands the spectrum of GATA3 mutations associated with HDR syndrome in the Chinese population and mimics HDR-related changes in vivo.
Collapse
Affiliation(s)
- Shuyao Pan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Shushu Long
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Liangchun Cai
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Junping Wen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Wei Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
2
|
Valenciaga A, Brock P, O’Donnell B, Ing SW. Diagnosing Hypoparathyroidism, Sensorineural Deafness, and Renal Dysplasia Syndrome and a Novel GATA3 Variant. JCEM CASE REPORTS 2025; 3:luae246. [PMID: 39822657 PMCID: PMC11735463 DOI: 10.1210/jcemcr/luae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 01/19/2025]
Abstract
Hypoparathyroidism (hypoPTH), sensorineural deafness, and renal dysplasia (HDR) syndrome is a rare autosomal dominant condition with approximately 200 cases published. HDR syndrome is caused by variants of GATA binding protein 3 gene (GATA3), which encodes a transcription factor, with multiple types of GATA3 variants reported. We present the case of a 76-year-old woman who was diagnosed with hypoPTH when she was aged 40 years and transferred care to our institution. Further history elucidated presence of deafness at age 1 year and chronic kidney disease with a left atrophic kidney diagnosed in her 60 seconds. Genetic testing identified a novel GATA3 missense variant of unknown significance (c.791G > A, p.Cys264Tyr). There was no family history of hypoPTH, deafness, or renal disease, which might indicate incomplete penetrance or de novo mutation. Advanced modeling of protein sequence and biophysical properties predicts abnormal protein function, suggesting possible pathogenicity. In addition, a likely pathogenic variant in the same amino acid was previously described in a patient with HDR, supporting the in silico prediction of pathogenicity in our patient's variant. Syndromic hypoPTH should be considered in patients even if presenting later in life with presumed chronic isolated conditions. Genetic testing can guide further disease screening and family testing when appropriate.
Collapse
Affiliation(s)
- Anisley Valenciaga
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Pamela Brock
- Department of Internal Medicine, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Benjamin O’Donnell
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Steven W Ing
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University Wexner Medical Center and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Lovely CB. Bone morphogenetic protein signaling pathway- Ethanol interactions disrupt palate formation independent of gata3. Reprod Toxicol 2025; 131:108754. [PMID: 39586481 PMCID: PMC11634638 DOI: 10.1016/j.reprotox.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of neurological defects and craniofacial malformations, associated with ethanol teratogenicity. While there is growing evidence for a genetic component to FASD, little is known of the genes underlying these ethanol-induced defects. Along with timing and dosage, genetic predispositions may help explain the variability within FASD. From a screen for gene-ethanol interactions, we found that mutants for Bmp signaling components are ethanol-sensitive leading to defects in the zebrafish palate. Loss of Bmp signaling results in reductions in gata3 expression in the maxillary domain of the neural crest in the 1st pharyngeal arch, leading to palate defects while upregulation of human GATA3 rescues these defects. Here, we show that ethanol-treated Bmp mutants exhibit misshaped and/or broken trabeculae. Surprisingly, up regulation of GATA3 does not rescue ethanol-induced palate defects and gata3 expression was not altered in ethanol-treated Bmp mutants or dorsomorphin-treated larvae. Timing of ethanol sensitivity shows that Bmp mutants are ethanol sensitive from 10 to 18 hours post-fertilization (hpf), prior to Bmp's regulation of gata3 in palate formation. This is consistent with our previous work with dorsomorphin-dependent knock down of Bmp signaling from 10 to 18 hpf disrupting endoderm formation and subsequent jaw development. Overall, this suggests that ethanol disrupts Bmp-dependent palate development independent of and earlier than the role of gata3 in palate formation by disrupting epithelial development. Ultimately, these data demonstrate that zebrafish is a useful model to identify and characterize gene-ethanol interactions and this work will directly inform our understanding of FASD.
Collapse
Affiliation(s)
- C Ben Lovely
- University of Louisville, School of Medicine, Department of Biochemistry and Molecular Genetics, 319 Abraham Flexner Way, Louisville, KY 40202, USA.
| |
Collapse
|
4
|
Lovely CB. Bone Morphogenetic Protein signaling pathway - ethanol interactions disrupt palate formation independent of gata3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623833. [PMID: 39605565 PMCID: PMC11601317 DOI: 10.1101/2024.11.15.623833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of neurological defects and craniofacial malformations, associated with ethanol teratogenicity. While there is growing evidence for a genetic component to FASD, little is known of the genes underlying these ethanol-induced defects. Along with timing and dosage, genetic predispositions may help explain the variability within FASD. From a screen for gene-ethanol interactions, we found that mutants for Bmp signaling components are ethanol-sensitive leading to defects in the zebrafish palate. Loss of Bmp signaling results in reductions in gata3 expression in the maxillary domain of the neural crest in the 1st pharyngeal arch, leading to palate defects while upregulation of human GATA3 rescues these defects. Here, we show that ethanol-treated Bmp mutants exhibit misshaped and/or broken trabeculae. Surprisingly, up regulation of GATA3 does not rescue ethanol-induced palate defects and gata3 expression was not altered in ethanol-treated Bmp mutants or dorsomorphin-treated larvae. Timing of ethanol sensitivity shows that Bmp mutants are ethanol sensitive from 10-18 hours post-fertilization (hpf), prior to Bmp's regulation of gata3 in palate formation. This is consistent with our previous work with dorsomorphin-dependent knock down of Bmp signaling from 10-18 hpf disrupting endoderm formation and subsequent jaw development. Overall, this suggests that ethanol disrupts Bmp-dependent palate development independent of and earlier than the role of gata3 in palate formation by disrupting epithelial development. Ultimately, these data demonstrate that zebrafish is a useful model to identify and characterize gene-ethanol interactions and this work will directly inform our understanding of FASD. Highlights Bmp pathway mutants are ethanol sensitive resulting in palate defects. Ethanol disrupts Bmp-dependent palate development independent of gata3 . Timing of ethanol sensitivity suggests ethanol disrupts Bmp-dependent epithelial morphogenesis.
Collapse
|
5
|
Hasegawa Y, Segawa T, Chida A, Yoshida E, Kinno H, Chiba H, Oda T, Takahashi Y, Nata K, Ishigaki Y. A novel frameshift variant of GATA3 (p.Ala17ProfsTer178) responsible for HDR syndrome in a Japanese family. Endocr J 2024; 71:1077-1086. [PMID: 39198190 PMCID: PMC11778358 DOI: 10.1507/endocrj.ej24-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/04/2024] [Indexed: 09/01/2024] Open
Abstract
HDR syndrome is an autosomal dominant disorder characterized by hypoparathyroidism (H), deafness (D), and renal dysplasia (R) caused by genetic variants of the GATA3 gene. We present the case of a 38-year-old Japanese man with HDR syndrome who exhibited hypoparathyroidism, sensorineural deafness, renal dysfunction, severe symptomatic hypocalcemia with Chvostek's and Trousseau's signs, and QT prolongation on electrocardiography. He had a family history of deafness and hypocalcemia. Genetic testing revealed a novel GATA3 gene variant at exon 2 (c.48delC), which induces a frameshift resulting in termination at codon 178, causing HDR syndrome. We summarized 45 Japanese cases of HDR syndrome with regard to the mode of onset (familial or sporadic) and the age at diagnosis. In addition, we summarized all previous cases of HDR syndrome with GATA3 gene variants. Mapping of previously reported genetic variants in HDR syndrome revealed that most missense variants were observed at exons 4 and 5 regions in the GATA3 gene. These two regions contain zinc finger domains, demonstrating their functional importance in GATA3 transcription. This review of literature provides a useful reference for diagnosing HDR syndrome and predicting the related future manifestations.
Collapse
Affiliation(s)
- Yutaka Hasegawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Toshie Segawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Ai Chida
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Eriko Yoshida
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Hirofumi Kinno
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Hiraku Chiba
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Tomoyasu Oda
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Yoshihiko Takahashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| | - Koji Nata
- Division of Medical Biochemistry, School of Pharmacy, Iwate Medical University, Iwate 028-3694, Japan
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Iwate 028-3695, Japan
| |
Collapse
|
6
|
Rive Le Gouard N, Lafond-Rive V, Jonard L, Loundon N, Achard S, Heidet L, Mosnier I, Lyonnet S, Brioude F, Serey Gaut M, Marlin S. HDR syndrome: Large cohort and systematic review. Clin Genet 2024; 106:564-573. [PMID: 38940299 DOI: 10.1111/cge.14583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
HDR syndrome is a rare disease characterized by hypoparathyroidism, deafness, and renal dysplasia. An autosomal dominant disease caused by heterozygous pathogenic GATA3 variants, the penetrance of each associated condition is variable. Literature reviews have provided some answers, but many questions remain, in particular what the relationship is between genotype and phenotype. The current study examines 28 patients with HDR syndrome combined with an exhaustive review of the literature. Some conditions such as hearing loss are almost always present, while others described as rare initially, do not seem to be so rare after all (genital malformations and basal ganglia calcifications). By modeling pathogenic GATA3 variants found in HDR syndrome, we found that missense variations appear to always be located in the same area (close to the two Zinc Finger domain). We describe new pathogenic GATA3 variants, of which some seem to always be associated with certain conditions. Many audiograms were studied to establish a typical audiometric profile associated with a phenotype in HDR. As mentioned in the literature, hearing function should always be assessed as early as possible and follow up of patients with HDR syndrome should include monitoring of parathyroid function and vesicoureteral reflux in order to prevent complications.
Collapse
Affiliation(s)
- Nicolas Rive Le Gouard
- Centre de Référence «Surdités Génétiques», Fédération de Médecine Génomique; Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
- UF de Génomique Chromosomique, Département de Génétique médicale, Hôpital Armand Trousseau, AP-HP Sorbonne Université, Paris, France
- Laboratory of Embryology and Genetics of Malformations, Imagine Institute, INSERM UMR 1163, Université de Paris Cité, Paris, France
| | | | - Laurence Jonard
- Centre de Référence «Surdités Génétiques», Fédération de Médecine Génomique; Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
| | - Natalie Loundon
- Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- Service d'ORL Pédiatrique et de Chirurgie Cervico-Faciale, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
| | - Sophie Achard
- Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- Service d'ORL Pédiatrique et de Chirurgie Cervico-Faciale, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
| | - Laurence Heidet
- Service de Néphrologie Pédiatrique, Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
| | - Isabelle Mosnier
- Unité Fonctionnelle implants auditifs, Centre Référent Implant Cochléaire Adulte Ile de France, Centre Constitutif Maladies rares, Surdités génétiques de l'adulte, Hôpital Pitié-Salpetrière, AP-HP, Sorbonne Université, Paris, France
| | - Stanislas Lyonnet
- Laboratory of Embryology and Genetics of Malformations, Imagine Institute, INSERM UMR 1163, Université de Paris Cité, Paris, France
| | - Frederic Brioude
- Explorations Fonctionnelles Endocriniennes-Biologie Moléculaire, Hôpital des Enfants Armand Trousseau, AP-HP, Sorbonne Université, Paris, France
| | - Margaux Serey Gaut
- Centre de Référence «Surdités Génétiques», Fédération de Médecine Génomique; Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
- Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Sandrine Marlin
- Centre de Référence «Surdités Génétiques», Fédération de Médecine Génomique; Hôpital Necker-Enfants Malades, AP-HP, Université de Paris Cité, Paris, France
- Laboratory of Embryology and Genetics of Malformations, Imagine Institute, INSERM UMR 1163, Université de Paris Cité, Paris, France
- Centre de Recherche en Audiologie (CREA), Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|
7
|
Takai S, Adachi M, Takahashi H, Shirakura M, Honkura Y, Yamauchi D, Katori Y. HDR syndrome, detected in the neonatal period by newborn hearing screening. Auris Nasus Larynx 2024; 51:406-410. [PMID: 37640596 DOI: 10.1016/j.anl.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome is an autosomal dominant disorder. Because HDR syndrome is caused by haploinsufficiency in GATA3, it exhibits variation in the onset and progression of hearing loss. In previous reports, the automated auditory brainstem response (AABR) was considered insufficient to detect sensorineural hearing loss caused by HDR syndrome. We report a case of HDR syndrome whose congenital hearing loss was detected by newborn hearing screening (NHS) using AABR. In this case, HDR syndrome was suspected due to hearing loss, hypocalcemia, and her family history. Genetic testing confirmed the diagnosis of HDR syndrome at 5 months of age. Because the phenotype of hearing loss due to HDR syndrome is variable and includes progressive hearing loss, these cases may not be detected by the HNS. However, most of the previous reports were published before the NHS became common and given the frequency of hearing loss complications in HDR syndrome. We consider that there is a reasonable number of HDR syndrome cases with abnormalities on the NHS. We believe that the NHS may also be useful for early detection of hearing loss due to HDR syndrome.
Collapse
Affiliation(s)
- Shunsuke Takai
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Mika Adachi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hiyori Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Masayuki Shirakura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Daisuke Yamauchi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
8
|
Huang B, Li S, Chai Y, Fan Y, Li X, Liu Y, Fu Y, Song X, Cui J. A novel GATA3 frameshift mutation causes hypoparathyroidism, sensorineural deafness, and renal dysplasia syndrome. Mol Genet Metab Rep 2024; 38:101063. [PMID: 38469092 PMCID: PMC10926224 DOI: 10.1016/j.ymgmr.2024.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/13/2024] Open
Abstract
Background Hypoparathyroidism, sensorineural deafness, and renal dysplasia (HDR) syndrome (Barakat syndrome) is a rare autosomal dominant disorder caused by mutations in the gene encoding GATA3 on chromosome 10p14. Method Informed consent was obtained from a 38-year-old female patient. 5 mL of venous blood was collected and sent for whole-exome sequencing. GATA3 constructs of both wild-type and mutant were transfected into HEK-293 T cells. Three-dimensional modeling, luciferase-reporter gene test, western blotting and cellular immunofluorescence were used to evaluate the effect of the mutation. Results A novel frameshift mutation c. 677dup(p.Pro227AlafsTer77), named P227Afs, was found in GATA3. Three-dimensional modeling revealed that the mutation caused the loss of the dual zinc finger structures 1 and 2 (ZNF1 and ZNF2) of the synthesized protein. Expression of wild-type GATA3 produced a six-fold increase in luciferase activity when compared with pcDNA3.1 vector only (P < 0.001), whereas the P227Afs mutant showed no increase. The mutation significantly reduced the transcriptional activity of GATA3. Immunofluorescence and western blotting analyses demonstrated that the mutation changed the nuclear location of GATA3 and caused difficulty in nuclearization. Conclusion A novel heterozygous frameshift mutation in GATA3 was identified and showed to result in difficult nuclearization, and a dominant-negative effect on the wild-type.
Collapse
Affiliation(s)
| | | | | | - Yu Fan
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yue Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yunhong Fu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xixi Song
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
9
|
Dinoi E, Pierotti L, Mazoni L, Citro F, Della Valentina S, Sardella C, Borsari S, Michelucci A, Caligo MA, Marcocci C, Cetani F. Clinical and molecular characteristics of two Italian kindreds with hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome. J Endocrinol Invest 2024; 47:469-478. [PMID: 37561279 DOI: 10.1007/s40618-023-02171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
PURPOSE Hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome, also known as Barakat syndrome, is a rare autosomal dominant disease characterized by the triad of hypoparathyroidism, deafness, and renal abnormalities. The disorder is caused by the haploinsufficiency of the zinc finger transcription factor GATA3 and exhibits a great clinical variability with an age-dependent penetrance of each feature. We report two unrelated kindreds whose probands were referred to our outpatient clinic for further evaluation of hypoparathyroidism. METHODS The proband of family 1, a 17-year-old boy, was referred for severe hypocalcemia (5.9 mg/dL) incidentally detected at routine blood tests. Abdomen ultrasound showed bilateral renal cysts. The audiometric evaluation revealed the presence of bilateral moderate hearing loss although the patient could communicate without any problem. Conversely, the proband of family 2, a 19-year-old man, had severe symptomatic hypocalcemia complicated by epileptic seizure at the age of 14 years; his past medical history was remarkable for right nephrectomy at the age of 4 months due to multicystic renal disease and bilateral hearing loss diagnosed at the age of 18 years. RESULTS Based on clinical, biochemical, and radiologic data, HDR syndrome was suspected and genetic analysis of the GATA3 gene revealed the presence of two pathogenetic variants in exon 3, c.404dupC and c.431dupG, in the proband of family 1 and 2, respectively. CONCLUSION HDR syndrome is a rare cause of hypoparathyroidism and must be excluded in all patients with apparently idiopathic hypoparathyroidism. A correct diagnosis is of great importance for early detection of other HDR-related features and genetic counseling.
Collapse
Affiliation(s)
- E Dinoi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Pierotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Mazoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - F Citro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Della Valentina
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Sardella
- Endocrine Unit 2, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - S Borsari
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Michelucci
- Laboratory of Molecular Genetics, University Hospital of Pisa, Pisa, Italy
| | - M A Caligo
- Laboratory of Molecular Genetics, University Hospital of Pisa, Pisa, Italy
| | - C Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Endocrine Unit 2, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - F Cetani
- Endocrine Unit 2, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| |
Collapse
|
10
|
Wang SX, Streit A. Shared features in ear and kidney development - implications for oto-renal syndromes. Dis Model Mech 2024; 17:dmm050447. [PMID: 38353121 PMCID: PMC10886756 DOI: 10.1242/dmm.050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The association between ear and kidney anomalies has long been recognized. However, little is known about the underlying mechanisms. In the last two decades, embryonic development of the inner ear and kidney has been studied extensively. Here, we describe the developmental pathways shared between both organs with particular emphasis on the genes that regulate signalling cross talk and the specification of progenitor cells and specialised cell types. We relate this to the clinical features of oto-renal syndromes and explore links to developmental mechanisms.
Collapse
Affiliation(s)
- Scarlet Xiaoyan Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
11
|
Virth J, Mack HG, Colville D, Crockett E, Savige J. Ocular manifestations of congenital anomalies of the kidney and urinary tract (CAKUT). Pediatr Nephrol 2024; 39:357-369. [PMID: 37468646 PMCID: PMC10728251 DOI: 10.1007/s00467-023-06068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are among the most common birth defects worldwide and a major cause of kidney failure in children. Extra-renal manifestations are also common. This study reviewed diseases associated with the Genomics England CAKUT-associated gene panel for ocular anomalies. In addition, each gene was examined for expression in the human retina and an ocular phenotype in mouse models using the Human Protein Atlas and Mouse Genome Informatics databases, respectively. Thirty-four (54%) of the 63 CAKUT-associated genes (55 'green' and 8 'amber') had a reported ocular phenotype. Five of the 6 most common CAKUT-associated genes (PAX2, EYA1, SALL1, GATA3, PBX1) that represent 30% of all diagnoses had ocular features. The ocular abnormalities found with most CAKUT-associated genes and with five of the six commonest were coloboma, microphthalmia, optic disc anomalies, refraction errors (astigmatism, myopia, and hypermetropia), and cataract. Seven of the CAKUT-associated genes studied (11%) had no reported ocular features but were expressed in the human retina or had an ocular phenotype in a mouse model, which suggested further possibly-unrecognised abnormalities. About one third of CAKUT-associated genes (18, 29%) had no ocular associations and were not expressed in the retina, and the corresponding mouse models had no ocular phenotype. Ocular abnormalities in individuals with CAKUT suggest a genetic basis for the disease and sometimes indicate the affected gene. Individuals with CAKUT often have ocular abnormalities and may require an ophthalmic review, monitoring, and treatment to preserve vision.
Collapse
Affiliation(s)
- James Virth
- Department of Medicine (Melbourne Health and Northern Health), Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Heather G Mack
- University Department of Surgery (Ophthalmology), Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Deb Colville
- University Department of Surgery (Ophthalmology), Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Emma Crockett
- Department of Medicine (Melbourne Health and Northern Health), Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia.
| |
Collapse
|
12
|
Prabhu PP, Ballal S, Augustine R, Shetty M. A Novel Mutation in GATA3 Gene in a Case of Hypoparathyroidism, Deafness, and Renal Dysplasia Syndrome. Indian J Nephrol 2023; 33:377-380. [PMID: 37881737 PMCID: PMC10593303 DOI: 10.4103/ijn.ijn_250_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/19/2022] [Indexed: 10/27/2023] Open
Abstract
A 39-year-old male was incidentally detected to have hypertension and chronic kidney disease (CKD) with left solitary functioning kidney in 2017. He has bilateral sensorineural hearing loss since adolescence. He was initially suspected to have adynamic bone disease in view of low parathyroid hormone levels and was started on teriparatide injections and calcium supplements. Despite all these measures, he had persistent hypocalcemia and low parathyroid hormone levels. Hence, Hypoparathyroidism, Deafness, and Renal dysplasia (HDR) syndrome was suspected, and the patient was evaluated for the same. Genetic analysis revealed the presence of a de novo and a novel frameshift mutation in GATA-binding protein 3 (GATA3) gene on chromosome 10p. To the best of our knowledge, this is the first case report of HDR syndrome being diagnosed by genetic analysis in India.
Collapse
Affiliation(s)
| | | | - Rohan Augustine
- Department of Nephrology, Manipal Hospitals, Bangalore, India
| | - Mitesh Shetty
- Department of Medical Genetics, Manipal Hospitals, Bengaluru, Karnataka, India
| |
Collapse
|
13
|
Gandolfi A, Ratnasamy K, Minutti C. Hypoparathyroidism, Sensorineural Deafness, and Renal Disease Syndrome Presenting With Febrile Seizures and Hypocalcemia. JCEM CASE REPORTS 2023; 1:luac025. [PMID: 37908274 PMCID: PMC10578366 DOI: 10.1210/jcemcr/luac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 11/02/2023]
Abstract
HDR syndrome is a rare genetic disorder caused by mutations in the GATA3 gene and characterized by hypoparathyroidism, sensorineural deafness, and renal disease. Here, we report case of a 9-month-old male with history of hydronephrosis and sensorineural deafness who presented with febrile seizures. He was found to have hypocalcemia and inappropriately normal parathyroid hormone. His neurologic and infectious workup were negative. Genetic testing revealed a nonsense mutation in the GATA3 gene, consistent with HDR syndrome. Hypocalcemia was responsive to calcium carbonate and calcitriol treatment. This case highlights hypocalcemia caused by hypoparathyroidism as a potential etiology of seizures. When hypoparathyroidism is detected with either hearing loss or renal disease, HDR syndrome should be considered, and other features of the syndrome should be investigated.
Collapse
Affiliation(s)
- Anne Gandolfi
- Department of Pediatrics, Rush University Medical Center Rush Pediatric Residency Program, Chicago, IL 60612, USA
| | - Kevin Ratnasamy
- Department of Combined Internal Medicine-Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Carla Minutti
- Department of Pediatric Endocrinology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Mansour F, Hinze C, Telugu NS, Kresoja J, Shaheed IB, Mosimann C, Diecke S, Schmidt-Ott KM. The centrosomal protein 83 (CEP83) regulates human pluripotent stem cell differentiation toward the kidney lineage. eLife 2022; 11:e80165. [PMID: 36222666 PMCID: PMC9629839 DOI: 10.7554/elife.80165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
During embryonic development, the mesoderm undergoes patterning into diverse lineages including axial, paraxial, and lateral plate mesoderm (LPM). Within the LPM, the so-called intermediate mesoderm (IM) forms kidney and urogenital tract progenitor cells, while the remaining LPM forms cardiovascular, hematopoietic, mesothelial, and additional progenitor cells. The signals that regulate these early lineage decisions are incompletely understood. Here, we found that the centrosomal protein 83 (CEP83), a centriolar component necessary for primary cilia formation and mutated in pediatric kidney disease, influences the differentiation of human-induced pluripotent stem cells (hiPSCs) toward IM. We induced inactivating deletions of CEP83 in hiPSCs and applied a 7-day in vitro protocol of IM kidney progenitor differentiation, based on timed application of WNT and FGF agonists. We characterized induced mesodermal cell populations using single-cell and bulk transcriptomics and tested their ability to form kidney structures in subsequent organoid culture. While hiPSCs with homozygous CEP83 inactivation were normal regarding morphology and transcriptome, their induced differentiation into IM progenitor cells was perturbed. Mesodermal cells induced after 7 days of monolayer culture of CEP83-deficient hiPCS exhibited absent or elongated primary cilia, displayed decreased expression of critical IM genes (PAX8, EYA1, HOXB7), and an aberrant induction of LPM markers (e.g. FOXF1, FOXF2, FENDRR, HAND1, HAND2). Upon subsequent organoid culture, wildtype cells differentiated to form kidney tubules and glomerular-like structures, whereas CEP83-deficient cells failed to generate kidney cell types, instead upregulating cardiomyocyte, vascular, and more general LPM progenitor markers. Our data suggest that CEP83 regulates the balance of IM and LPM formation from human pluripotent stem cells, identifying a potential link between centriolar or ciliary function and mesodermal lineage induction.
Collapse
Affiliation(s)
- Fatma Mansour
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Hinze
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| | - Narasimha Swamy Telugu
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Jelena Kresoja
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Iman B Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo UniversityCairoEgypt
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Sebastian Diecke
- Berlin Institute of HealthBerlinGermany
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Kai M Schmidt-Ott
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin BerlinBerlinGermany
- Molecular and Translational Kidney Research, Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
- Department of Nephrology and Hypertension, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
15
|
Alkaissi HR, Banerji MA. Primary Hypoparathyroidism Presenting as Idiopathic Intracranial Hypertension in a Patient With Barakat Syndrome. Cureus 2022; 14:e24521. [PMID: 35651450 PMCID: PMC9138397 DOI: 10.7759/cureus.24521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 11/05/2022] Open
|
16
|
Yoshino A, Kawamoto S, Abe T, Hidaka Y, Muroya K, Tokumoto T, Takeda T. A case of hypoparathyroidism, sensorineural deafness, and renal dysplasia syndrome with kidney failure and recurrent pancreatitis: Answers. Pediatr Nephrol 2021; 36:4071-4075. [PMID: 34324053 DOI: 10.1007/s00467-021-05190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Atsunori Yoshino
- Department of Nephrology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami-Koshigaya, Koshigaya, Saitama, 343-8555, Japan. .,Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, 2-138-4 Mutsugawa, Minami, Kanagawa, 232-8555, Japan.
| | - Shinya Kawamoto
- Department of Nephrology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami-Koshigaya, Koshigaya, Saitama, 343-8555, Japan
| | - Toshihiro Abe
- Department of Nephrology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami-Koshigaya, Koshigaya, Saitama, 343-8555, Japan
| | - Yuji Hidaka
- Department of Nephrology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami-Koshigaya, Koshigaya, Saitama, 343-8555, Japan
| | - Koji Muroya
- Department of Urology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami-Koshigaya, Koshigaya, Saitama, 343-8555, Japan
| | - Tadahiko Tokumoto
- Department of Pediatrics, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami-Koshigaya, Koshigaya, Saitama, 343-8555, Japan
| | - Tetsuro Takeda
- Department of Nephrology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami-Koshigaya, Koshigaya, Saitama, 343-8555, Japan
| |
Collapse
|
17
|
Zeybek C, Akin O, Bolat A. Hypocalcemia not related to chronic kidney disease: Answers. Pediatr Nephrol 2021; 36:3105-3107. [PMID: 33730281 DOI: 10.1007/s00467-021-05036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Cengiz Zeybek
- Department of Pediatric Nephrology, University of Health Sciences, Gülhane School of Medicine, Ankara, Türkiye.
| | - Onur Akin
- Department of Pediatric Endocrinology, University of Health Sciences, Gülhane School of Medicine, Ankara, Türkiye
| | - Ahmet Bolat
- Department of Pediatrics, University of Health Sciences, Gülhane School of Medicine, Ankara, Türkiye
| |
Collapse
|
18
|
Swartz ME, Lovely CB, Eberhart JK. Variation in phenotypes from a Bmp-Gata3 genetic pathway is modulated by Shh signaling. PLoS Genet 2021; 17:e1009579. [PMID: 34033651 PMCID: PMC8184005 DOI: 10.1371/journal.pgen.1009579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/07/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
We sought to understand how perturbation of signaling pathways and their targets generates variable phenotypes. In humans, GATA3 associates with highly variable defects, such as HDR syndrome, microsomia and choanal atresia. We previously characterized a zebrafish point mutation in gata3 with highly variable craniofacial defects to the posterior palate. This variability could be due to residual Gata3 function, however, we observe the same phenotypic variability in gata3 null mutants. Using hsp:GATA3-GFP transgenics, we demonstrate that Gata3 function is required between 24 and 30 hpf. At this time maxillary neural crest cells fated to generate the palate express gata3. Transplantation experiments show that neural crest cells require Gata3 function for palatal development. Via a candidate approach, we determined if Bmp signaling was upstream of gata3 and if this pathway explained the mutant's phenotypic variation. Using BRE:d2EGFP transgenics, we demonstrate that maxillary neural crest cells are Bmp responsive by 24 hpf. We find that gata3 expression in maxillary neural crest requires Bmp signaling and that blocking Bmp signaling, in hsp:DN-Bmpr1a-GFP embryos, can phenocopy gata3 mutants. Palatal defects are rescued in hsp:DN-Bmpr1a-GFP;hsp:GATA3-GFP double transgenic embryos, collectively demonstrating that gata3 is downstream of Bmp signaling. However, Bmp attenuation does not alter phenotypic variability in gata3 loss-of-function embryos, implicating a different pathway. Due to phenotypes observed in hypomorphic shha mutants, the Sonic Hedgehog (Shh) pathway was a promising candidate for this pathway. Small molecule activators and inhibitors of the Shh pathway lessen and exacerbate, respectively, the phenotypic severity of gata3 mutants. Importantly, inhibition of Shh can cause gata3 haploinsufficiency, as observed in humans. We find that gata3 mutants in a less expressive genetic background have a compensatory upregulation of Shh signaling. These results demonstrate that the level of Shh signaling can modulate the phenotypes observed in gata3 mutants.
Collapse
Affiliation(s)
- Mary E. Swartz
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - C. Ben Lovely
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Johann K. Eberhart
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
19
|
Pan YQ, Fu JH. Case Report: Clinical Description of a Patient Carrying a 12.48 Mb Microdeletion Involving the 10p13-15.3 Region. Front Pediatr 2021; 9:603666. [PMID: 33732667 PMCID: PMC7959834 DOI: 10.3389/fped.2021.603666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Partial deletion of 10p chromosome is a rare chromosomal aberration. Submicroscopic deletion of 10p15.3 is mainly related to cognitive deficits, speech disorders, motor delay, and hypotonia with the deleted region ranging from 0.15 to 4 Mb. The clinical phenotype is mainly determined by the ZMYND11 and DIP2C genes. Here, we report a rare case of feeding difficulties, hypocalcemia, and psychomotor retardation. Our patient has a 12.48 Mb deletion in 10p15.3-10p13, which is the second case of large 10p deletion among reported cases thus far.
Collapse
Affiliation(s)
- Yu-Qing Pan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jian-Hua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Kishi H, Jojima T, Kogai T, Iijima T, Ohira E, Tanuma D, Konno S, Kato K, Kezuka A, Akimoto K, Sakumoto J, Hishinuma A, Tomaru T, Makita N, Usui I, Aso Y. A case of hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome with a novel frameshift variant in GATA3, p.W10Cfs40, lacks kidney malformation. Clin Case Rep 2020; 8:2619-2624. [PMID: 33363791 PMCID: PMC7752573 DOI: 10.1002/ccr3.3186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 11/11/2022] Open
Abstract
Autosomal dominant hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome are typically diagnosed by manifestations of the three features with a positive family history. Our case carried a de novo variant in causative gene, GATA3, but presenting no renal dysplasia or family history. The phenotypic heterogeneity raises a caution for diagnosis.
Collapse
Affiliation(s)
- Haruka Kishi
- Department of Endocrinology and MetabolismDokkyo Medical UniversityMibu, TochigiJapan
| | - Teruo Jojima
- Department of Endocrinology and MetabolismDokkyo Medical UniversityMibu, TochigiJapan
| | - Takahiko Kogai
- Department of Infection Control and Clinical Laboratory MedicineDokkyo Medical University MibuShimotsuga, TochigiJapan
| | - Toshie Iijima
- Department of Endocrinology and MetabolismDokkyo Medical UniversityMibu, TochigiJapan
| | - Eriko Ohira
- Department of Endocrinology and MetabolismDokkyo Medical UniversityMibu, TochigiJapan
| | - Dai Tanuma
- Department of Endocrinology and MetabolismDokkyo Medical UniversityMibu, TochigiJapan
| | - Sachiyo Konno
- Center of Medical UltrasonicsDokkyo Medical University MibuShimotsuga, TochigiJapan
| | - Kanako Kato
- Department of Endocrinology and MetabolismDokkyo Medical UniversityMibu, TochigiJapan
| | - Atsumi Kezuka
- Department of Endocrinology and MetabolismDokkyo Medical UniversityMibu, TochigiJapan
| | - Kazumi Akimoto
- Division of Clinical ScienceResearch Support CenterDokkyo Medical University MibuShimotsuga, TochigiJapan
| | - Junko Sakumoto
- Department of Infection Control and Clinical Laboratory MedicineDokkyo Medical University MibuShimotsuga, TochigiJapan
| | - Akira Hishinuma
- Department of Infection Control and Clinical Laboratory MedicineDokkyo Medical University MibuShimotsuga, TochigiJapan
| | - Takuya Tomaru
- Department of Endocrinology and MetabolismDokkyo Medical UniversityMibu, TochigiJapan
| | - Noriko Makita
- Department of Nephrology and EndocrinologyThe University of TokyoTokyoJapan
| | - Isao Usui
- Department of Endocrinology and MetabolismDokkyo Medical UniversityMibu, TochigiJapan
| | - Yoshimasa Aso
- Department of Endocrinology and MetabolismDokkyo Medical UniversityMibu, TochigiJapan
| |
Collapse
|
21
|
Lemos MC, Thakker RV. Hypoparathyroidism, deafness, and renal dysplasia syndrome: 20 Years after the identification of the first GATA3 mutations. Hum Mutat 2020; 41:1341-1350. [PMID: 32442337 DOI: 10.1002/humu.24052] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/28/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022]
Abstract
The hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome is an autosomal dominant disorder caused by heterozygous mutations of the GATA3 gene. In the last 20 years, since the identification of the genetic cause of the HDR syndrome, GATA3 mutations have been reported in 124 families (177 patients). The clinical aspects and molecular genetics of the HDR syndrome are reviewed here together with the reported mutations and phenotypes. Reported mutations consist of 40% frameshift deletions or insertions, 23% missense mutations, 14% nonsense mutations, 6% splice-site mutations, 1% in-frame deletions or insertions, 15% whole-gene deletions, and 1% whole-gene duplication. Missense mutations were found to cluster in the regions encoding the two GATA3 zinc-finger domains. Patients showed great clinical variability and the penetrance of each HDR defect increased with age. The most frequently observed abnormality was deafness (93%), followed by hypoparathyroidism (87%) and renal defects (61%). The mean age of diagnosis of HDR was 15.3, 7.5, and 14.0 years, respectively. However, patients with whole-gene deletions and protein-truncating mutations were diagnosed earlier than patients with missense mutations.
Collapse
Affiliation(s)
- Manuel C Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Rajesh V Thakker
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Abstract
BACKGROUND Hypoparathyroidism is a rare endocrine disorder characterized by hypocalcemia and low or undetectable levels of parathyroid hormone. METHODS This review is an evidence-based summary of hypoparathyroidism in terms of relevant pathophysiological, clinical, and therapeutic concepts. RESULTS Many clinical manifestations of hypoparathyroidism are due to the lack of the physiological actions of parathyroid hormone on its 2 major target organs: the skeleton and the kidney. The skeleton is inactive, accruing bone without remodeling it. The kidneys lose the calcium-conserving actions of parathyroid hormone and, thus, excrete a greater fraction of calcium. Biochemical manifestations, besides hypocalcemia and low or undetectable levels of parathyroid hormone, include hyperphosphatemia and low levels of 1,25-dihydroxyvitamin D. Calcifications in the kidney, brain, and other soft tissues are common. Removal of, or damage to, the parathyroid glands at the time of anterior neck surgery is, by far, the most likely etiology. Autoimmune destruction of the parathyroid glands and other genetic causes represent most of the other etiologies. Conventional treatment with calcium and active vitamin D can maintain the serum calcium level but high doses may be required, adding to the risk of long-term soft tissue calcifications. The advent of replacement therapy with recombinant human PTH(1-84) represents a major step in the therapeutics of this disease. CONCLUSIONS Advances in our knowledge of hypoparathyroidism have led to greater understanding of the disease itself and our approach to it.
Collapse
Affiliation(s)
- John P Bilezikian
- Department of Medicine, Division of Endocrinology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Correspondence and Reprint Requests: John P. Bilezikian, Vice-Chair, International Research and Education, Department of Medicine, Vagelos College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032. E-mail:
| |
Collapse
|
23
|
Singh K, Sethi J, Bhargava V. Hyperkalemia unveiled: A case of Barakat syndrome. Indian J Nephrol 2020; 30:135-136. [PMID: 32269443 PMCID: PMC7132841 DOI: 10.4103/ijn.ijn_132_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/01/2019] [Accepted: 06/09/2019] [Indexed: 11/06/2022] Open
|
24
|
Joseph ADD, Sirisena ND, Kumanan T, Sujanitha V, Strelow V, Yamamoto R, Wieczorek S, Dissanayake VHW. Hypoparathyroidism, Sensorineural deafness and renal disease (Barakat syndrome) caused by a reduced gene dosage in GATA3: a case report and review of literature. BMC Endocr Disord 2019; 19:111. [PMID: 31660939 PMCID: PMC6816161 DOI: 10.1186/s12902-019-0438-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/09/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Barakat syndrome is an autosomal dominant rare genetic disease caused by haploinsufficiency of the GATA binding protein 3 (GATA3) gene. It is also known as HDR syndrome, and is characterized by varying degrees of hypoparathyroidism, sensorineural deafness and renal disease. This is the first report of a heterozygous GATA3 whole gene deletion causing HDR syndrome in a Sri Lankan family. CASE PRESENTATION A 13-year-old boy with an acute febrile illness, hypocalcaemia and bilateral carpopedal spasm was referred for evaluation. A past medical history of treatment for persistent hypocalcaemic symptoms since the age of 7 months was obtained. Biochemical investigations showed persistent low serum corrected calcium levels with hyperphosphataemia, hypomagnesaemia, low parathyroid hormone levels, hypercalciuria, and low total 25-hydroxy vitamin D levels. His renal functions and renal sonography were normal. Audiometry showed bilateral moderate to severe sensorineural hearing loss. On screening, his mother was also found to have asymptomatic hypocalcaemia, hypomagnesaemia, hyperphosphataemia, hypercalciuria and low total 25-hydroxy vitamin D levels. She had impaired renal functions and chronic parenchymal changes in the renal scan. Audiometry showed bilateral profound sensorineural hearing loss. Genetic analysis using multiplex-ligation dependent probe amplification showed a reduced gene dosage for GATA3 that is consistent with a heterozygous whole gene deletion in both the child and mother. CONCLUSIONS This report demonstrates the wide intra-familial phenotypic variability observed in HDR syndrome and adds further to the existing scientific literature on the genotype-phenotype correlation of this syndrome. It highlights the need for HDR syndrome to be considered in the differential diagnosis of persistent hypocalcaemia with sensorineural deafness and/or renal involvement, and for appropriate genetic evaluation to be done to confirm the diagnosis.
Collapse
Affiliation(s)
- Anne D. D. Joseph
- University Medical Unit, Teaching Hospital Jaffna, Jaffna, Sri Lanka
| | - Nirmala D. Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo 8, Sri Lanka
| | | | | | - Veronika Strelow
- MVZ Dr. Eberhard & Partner Dortmund GbR (ÜBAG), 44137 Dortmund, Germany
| | - Raina Yamamoto
- MVZ Dr. Eberhard & Partner Dortmund GbR (ÜBAG), 44137 Dortmund, Germany
| | - Stefan Wieczorek
- MVZ Dr. Eberhard & Partner Dortmund GbR (ÜBAG), 44137 Dortmund, Germany
| | | |
Collapse
|
25
|
Stonebrook E, Hoff M, Spencer JD. Congenital Anomalies of the Kidney and Urinary Tract: A Clinical Review. ACTA ACUST UNITED AC 2019; 5:223-235. [PMID: 32864297 DOI: 10.1007/s40746-019-00166-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose of review This review highlights the most common congenital anomalies of the kidney and urinary tract (CAKUT) that are encountered in pediatric practices. CAKUT are the most common cause of prenatally diagnosed developmental malformations and encompass a spectrum of disorders impacting lower urinary tract development as well as kidney development and function. In pediatric and adolescent populations, developmental abnormalities are the leading cause of end-stage kidney disease. The goal of this review is to provide pediatric providers a framework for appropriate clinical management as well as highlight when referral to subspecialty care is needed. Recent findings While the exact etiologies of CAKUT are not completely defined, new evidence demonstrates that genetic and molecular changes impact embryonic kidney and urinary tract development. As a result, phenotypes and clinical outcomes may be affected. Summary Because pediatric providers provide front-line care to children and adolescents with developmental kidney and urinary tract anomalies, updated knowledge of CAKUT pathogenesis, embryology, clinical management, and patient outcomes is needed. This manuscript reviews CAKUT etiologies and essential diagnostic, prognostic, and management strategies.
Collapse
Affiliation(s)
- Emily Stonebrook
- Pediatric Nephrology Fellowship Program, Division of Pediatric Nephrology, Nationwide Children's Hospital, Columbus, OH USA.,Division of Pediatric Nephrology, Nationwide Children's Hospital, Columbus, OH USA
| | - Monica Hoff
- Pediatrics Residency Program, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - John David Spencer
- Division of Pediatric Nephrology, Nationwide Children's Hospital, Columbus, OH USA
| |
Collapse
|
26
|
HDR Syndrome Accompanying Type 1 Diabetes Mellitus and Hypopituitarism. Case Rep Endocrinol 2019; 2019:7276947. [PMID: 31223507 PMCID: PMC6541993 DOI: 10.1155/2019/7276947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/08/2019] [Indexed: 11/17/2022] Open
Abstract
HDR (Hypoparathyroidism, Deafness, and Renal Dysplasia) syndrome is an autosomal dominant disorder characterized by the triad of hypoparathyroidism, sensorineural deafness, and renal disease. Approximately 65% of patients with HDR syndrome have all three of these features, while others have different combinations of these features. We aimed to present a case with primary hypoparathyroidism, hearing loss, and nondiabetic chronic kidney disease and diagnosed as HDR syndrome while being followed up for type 1 diabetes mellitus and hypopituitarism.
Collapse
|
27
|
Abstract
Hypoparathyroidism is characterized by hypocalcemia and hyperphosphatemia and is due to insufficient levels of circulating parathyroid hormone. Hypoparathyroidism may be an isolated condition or a component of a complex syndrome. Although genetic disorders are not the most common cause of hypoparathyroidism, molecular analyses have identified a growing number of genes that when defective result in impaired formation of the parathyroid glands, disordered synthesis or secretion of parathyroid hormone, or postnatal destruction of the parathyroid glands.
Collapse
Affiliation(s)
- Rebecca J Gordon
- Division of Endocrinology and Diabetes, The Center for Bone Health, The Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, 11 Northwest Tower, Suite 30, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Michael A Levine
- Division of Endocrinology and Diabetes, The Center for Bone Health, The Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, 3615 Civic Center Boulevard, Abramson Research Building, Room 510A, Philadelphia, PA 19104, USA
| |
Collapse
|
28
|
Kita M, Kuwata Y, Usui T. Familial congenital choanal atresia with GATA3 associated hypoparathyroidism-deafness-renal dysplasia syndrome unidentified on auditory brainstem response. Auris Nasus Larynx 2018; 46:808-812. [PMID: 30396722 DOI: 10.1016/j.anl.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/13/2018] [Accepted: 10/17/2018] [Indexed: 01/16/2023]
Abstract
Hypoparathyroidism-deafness-renal dysplasia (HDR) syndrome is a rare autosomal dominant disorder primarily caused by GATA3 haploinsufficiency and is challenging to diagnose in early childhood. We report a Japanese family with HDR syndrome and congenital choanal atresia. The 6-year-old female proband was diagnosed with epilepsy at the age of three. Under carbamazepine monotherapy, the patient presented hypoparathyroidism accompanied by severe hypocalcemia. Subsequently, renal ultrasound analysis revealed bilateral multicystic dysplastic kidneys. Because she had difficulty hearing, we sequenced GATA3 and determined that she had a c.708_709insC (p.Ser237Glnfs*66) allelic variant in exon 3. As a result, we found a family of this disease. Each family member, including her grandfather, mother, and two siblings, had HDR syndrome of varying clinical penetrance. We found a craniofacial anomaly, congenital choanal atresia, which was inherited as an autosomal dominant trait. Hypocalcemia coupled with vitamin D deficiency, triggered by carbamazepine treatment, ultimately revealed the proband's childhood- onset HDR syndrome. Pure-tone audiometry revealed different severities of deafness as well as the progression of sensory hearing loss. However, auditory brainstem response for hearing screening is probably insufficient for ascertaining HDR syndrome in the early stages of life. We presented new clinical clues to diagnose the HDR syndrome.
Collapse
Affiliation(s)
- Makoto Kita
- National Hospital Organization Kyoto Medical Center, Department of Pediatrics, Kyoto, Japan.
| | - Yasuhiro Kuwata
- National Hospital Organization Kyoto Medical Center, Department of Neurology, Kyoto, Japan
| | - Takeshi Usui
- Shizuoka Prefectural Hospital Organization, Department of Medical Genetics, Shizuoka, Japan
| |
Collapse
|
29
|
Martins FTA, Ramos BD, Sartorato EL. A rare case of deafness and renal abnormalities in HDR syndrome caused by a de novo mutation in the GATA3 gene. Genet Mol Biol 2018; 41:794-798. [PMID: 30534854 PMCID: PMC6415598 DOI: 10.1590/1678-4685-gmb-2017-0194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 03/03/2018] [Indexed: 11/22/2022] Open
Abstract
HDR syndrome is a rare autosomal dominant disorder caused by mutations in the GATA3 gene and characterized by hypoparathyroidism, sensorineural deafness and renal abnormalities. Here we report a Brazilian family, from which the proband, his mother and his grandfather were diagnosed with bilateral sensorineural hearing loss. Molecular screening of the GJB2, GJB6 and MTRNR1 genes in the proband showed no alterations; however, whole exome sequencing detected a heterozygous mutation, c.1099C > T (p.Arg367*), in the GATA3 gene. Segregation analyses showed that the mother also had the mutation, but not the grandparents, hence indicating a different hearing impairment type for the grandfather. Paternity test of the mother of the proband confirmed that she has a de novo mutation. Furthermore, HDR syndrome was confirmed with new clinical evaluations showing right kidney agenesis in the proband. This is the first study reporting only deafness and renal abnormalities as symptoms of the p.Arg367* mutation in the GATA3 gene, and also the sixth HDR syndrome case in the world, and the first on the American continent. Together with other reported cases, this study highlights the variability of HDR syndrome symptoms in individuals with the p.Arg367* mutation, emphasizing the importance of molecular analyses for correct diagnosis.
Collapse
Affiliation(s)
- Fábio Tadeu Arrojo Martins
- Laboratório de Genética Molecular Humana, Centro de Engenharia Molecular e Genética, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Berenice Dias Ramos
- Departamento de Otorrinolaringologia e Fonoaudiologia Pediátrica, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Edi Lúcia Sartorato
- Laboratório de Genética Molecular Humana, Centro de Engenharia Molecular e Genética, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| |
Collapse
|
30
|
Expression of GATA-3 in Testicular and Gynecologic Mesothelial Neoplastic and Non-neoplastic Tissues. Int J Gynecol Pathol 2018; 37:284-289. [DOI: 10.1097/pgp.0000000000000403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Barakat AJ, Raygada M, Rennert OM. Barakat syndrome revisited. Am J Med Genet A 2018; 176:1341-1348. [PMID: 29663634 DOI: 10.1002/ajmg.a.38693] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/10/2018] [Accepted: 03/09/2018] [Indexed: 01/23/2023]
Abstract
Barakat syndrome also known as HDR syndrome (Online Mendelian Inheritance in Man [OMIM] 146255), was first described by Barakat et al. in . It is a rare genetic disorder characterized by the triad of hypoparathyroidism "H," sensorineural deafness "D," and renal disease "R." The defect is caused by deletions in chromosome 10p14 or mutations in the GATA3 gene. Although the syndrome has been phenotypically defined by this triad the literature identifies cases with different components with, or without GATA3 defects making the definition of the syndrome confusing. We analyzed 180 cases and attempted to define the phenotype of the syndrome and suggest guidelines for diagnosis. We suggest that the diagnosis could be confirmed in patients who have all three components, and in those who have two components with a positive family history. GATA3 testing is optional to establish the diagnosis in these patients. The syndrome should be considered in patients with isolated "D" where other causes of "D" have been excluded and those with isolated "R," especially if there is family history of any of these components. In these instances, confirmatory GATA3 testing is indicated to confirm the diagnosis. In patients with nonsurgical "H," where "D" and "R" have been conclusively ruled out GATA3 studies are not needed as none of these patients were shown to be GATA3 haploinsufficient. Only 64.4% of patients in our review had "HDR." Some findings might have not been recognized or may could have appeared later in life, but it is evident that this syndrome is genotypically heterogeneous.
Collapse
Affiliation(s)
| | - Margarita Raygada
- Georgetown University Medical Center, Washington, DC
- Section on Endocrinology & Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
| | - Owen M Rennert
- Section on Endocrinology & Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
32
|
Kojima M, Nagano T, Nakata K, Hara S, Katsurada N, Yamamoto M, Tachihara M, Kamiryo H, Kobayashi K, Usui T, Nishimura Y. Lung squamous cell carcinoma associated with hypoparathyroidism with sensorineural deafness and renal dysplasia syndrome: a case report. Onco Targets Ther 2018; 11:1595-1599. [PMID: 29593425 PMCID: PMC5865551 DOI: 10.2147/ott.s161420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoparathyroidism with sensorineural deafness and renal dysplasia (HDR) syndrome is an autosomal dominant condition caused by mutations of the gene encoding the dual zinc-finger transcription factor, GATA3. A previous study identified some patients with GATA3 gene variants and breast cancer, suggesting that GATA3 variants may contribute to tumorigenesis in estrogen receptor 1-positive breast tumors; however, these patients did not have HDR syndrome. A 32-year-old nonsmoking Japanese woman was histologically diagnosed with lung squamous cell carcinoma associated with HDR syndrome and a c.C952T>C (p.C318R) germline mutation in GATA3. This is the first report describing cancer in a patient with HDR syndrome. Our data indicates that GATA3 mutations may be a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Mariko Kojima
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kyosuke Nakata
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Shigeo Hara
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Naoko Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Motoko Tachihara
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hiroshi Kamiryo
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takeshi Usui
- Department of Medical Genetics, Shizuoka General Hospital, Shizuoka City, Shizuoka, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
33
|
Belge H, Dahan K, Cambier JF, Benoit V, Morelle J, Bloch J, Vanhille P, Pirson Y, Demoulin N. Clinical and mutational spectrum of hypoparathyroidism, deafness and renal dysplasia syndrome. Nephrol Dial Transplant 2018; 32:830-837. [PMID: 27387476 DOI: 10.1093/ndt/gfw271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/07/2016] [Indexed: 11/12/2022] Open
Abstract
Background Hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is a rare autosomal dominant disorder, secondary to mutations in the GATA-3 gene. Due to its wide range of penetrance and expressivity, the disease may not always be recognized. We herein describe clinical and genetic features of patients with HDR syndrome, highlighting diagnostic clues. Methods Medical records of eight patients from five unrelated families exhibiting GATA-3 mutations were reviewed retrospectively, in conjunction with all previously reported cases. Results HDR syndrome was diagnosed in eight patients between the ages of 18 and 60 years. Sensorineural deafness was consistently diagnosed, ranging from clinical hearing loss since infancy in seven patients to deafness detected only by audiometry in adulthood in one single patient. Hypoparathyroidism was present in six patients (with hypocalcaemia and inaugural seizures in two out of six). Renal abnormalities observed in six patients were diverse and of dysplastic nature. Three patients displayed nephrotic-range proteinuria and reached end-stage renal disease (ESRD) between the ages of 19 and 61 years, whilst lesions of focal and segmental glomerulosclerosis were histologically demonstrated in one of them. Interestingly, phenotype severity differed significantly between a mother and son within one family. Five new mutations of GATA-3 were identified, including three missense mutations affecting zinc finger motifs [NM_001002295.1: c.856A>G (p.N286D) and c.1017C>G (p.C339W)] or the conserved linker region [c.896G>A (p.R299G)], and two splicing mutations (c.924+4_924+19del and c.1051-2A>G). Review of 115 previously reported cases of GATA-3 mutations showed hypoparathyroidism and deafness in 95% of patients, and renal abnormalities in only 60%. Overall, 10% of patients had reached ESRD. Conclusions We herein expand the clinical and mutational spectrum of HDR syndrome, illustrating considerable inter- and intrafamilial phenotypic variability. Diagnosis of HDR should be considered in any patient with hypoparathyroidism and deafness, whether associated with renal abnormalities or not. HDR diagnosis is established through identification of a mutation in the GATA-3 gene.
Collapse
Affiliation(s)
- Hendrica Belge
- Division of Nephrology, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium.,Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Karin Dahan
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | | | - Valérie Benoit
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Johann Morelle
- Division of Nephrology, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Julie Bloch
- Division of Nephrology, Centre hospitalier de Valenciennes, Valenciennes, France
| | - Philippe Vanhille
- Division of Nephrology, Centre hospitalier de Valenciennes, Valenciennes, France
| | - Yves Pirson
- Division of Nephrology, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie Demoulin
- Division of Nephrology, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
34
|
Horta M, Lino C, Lemos MC. Hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome and GATA3. QJM 2017; 110:837-838. [PMID: 29025137 DOI: 10.1093/qjmed/hcx176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 08/14/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- M Horta
- From the CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã 6200-506, Portugal
| | - C Lino
- Serviço de Medicina Interna, Centro Hospitalar Cova da Beira, Covilhã 6200-251, Portugal
| | - M C Lemos
- From the CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã 6200-506, Portugal
| |
Collapse
|
35
|
Abstract
Hypoparathyroidism is a disease characterized by inadequately low circulating concentrations of parathyroid hormone (PTH) resulting in low calcium levels and increased phosphate levels in the blood. Symptoms of the disease result from increased neuromuscular irritability caused by hypocalcaemia and include tingling, muscle cramps and seizures. The most common cause of the disease is inadvertent removal of, or injury to, the parathyroid glands during neck surgery, followed by genetic, idiopathic and autoimmune aetiologies. Conventional treatment includes activated vitamin D and/or calcium supplements, but this treatment does not fully replace the functions of PTH and can lead to short-term problems (such as hypocalcaemia, hypercalcaemia and increased urinary calcium excretion) and long-term complications (which include nephrocalcinosis, kidney stones and brain calcifications). PTH replacement has emerged as a new treatment option. Clinical trials using human PTH(1-34) and PTH(1-84) showed that this treatment was safe and effective in studies lasting up to 6 years. Recombinant human PTH(1-84) has been approved in the United States and Europe for the management of hypoparathyroidism; however, its effect on long-term complications is still being evaluated. Clinical practice guidelines, which describe the consensus of experts in the field, have been published and recognize the need for more research to optimize care. In this Primer, we summarize current knowledge of the prevalence, pathophysiology, clinical presentation and management of hypoparathyroidism.
Collapse
|
36
|
Kamezaki M, Kusaba T, Adachi T, Yamashita N, Nakata M, Ota N, Shiotsu Y, Ishida M, Usui T, Tamagaki K. Unusual Proliferative Glomerulonephritis in a Patient Diagnosed to Have Hypoparathyroidism, Sensorineural Deafness, and Renal Dysplasia (HDR) Syndrome with a Novel Mutation in the GATA3 Gene. Intern Med 2017; 56:1393-1397. [PMID: 28566604 PMCID: PMC5498205 DOI: 10.2169/internalmedicine.56.7930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/03/2016] [Indexed: 11/06/2022] Open
Abstract
Hypoparathyroidism, sensorineural deafness, and renal dysplasia (HDR) syndrome is a rare autosomal dominant disease caused by GATA3 mutations. Although several cases with variable renal features have been reported, the presence of histological changes within the glomeruli in adult patients is unclear. We herein report an adult case of HDR syndrome with a novel p.C288W (TGC>TGG) missense mutation in GATA3. His renal histology showed a membranoproliferative glomerulonephritis-like glomerular lesion. Additional renal histological analyses of HDR syndrome patients will be needed to clarify the role of GATA3 in both the developing and adult kidney.
Collapse
Affiliation(s)
- Michitsugu Kamezaki
- Division of Nephrology, Department of Medicine, Kyoto Prefectural University of Medicine, Japan
| | - Tetsuro Kusaba
- Division of Nephrology, Department of Medicine, Kyoto Prefectural University of Medicine, Japan
| | - Takaomi Adachi
- Division of Nephrology, Department of Medicine, Kyoto Prefectural University of Medicine, Japan
| | - Noriyuki Yamashita
- Division of Nephrology, Department of Medicine, Kyoto Prefectural University of Medicine, Japan
| | - Mayumi Nakata
- Division of Nephrology, Department of Medicine, Kyoto Prefectural University of Medicine, Japan
| | - Noriyoshi Ota
- Division of Nephrology, Department of Medicine, Kyoto Prefectural University of Medicine, Japan
| | - Yayoi Shiotsu
- Division of Nephrology, Department of Medicine, Kyoto Prefectural University of Medicine, Japan
| | - Mami Ishida
- Division of Nephrology, Department of Medicine, Kyoto Prefectural University of Medicine, Japan
| | - Takeshi Usui
- Department of Medical Genetics, Shizuoka General Hospital, Japan
| | - Keiichi Tamagaki
- Division of Nephrology, Department of Medicine, Kyoto Prefectural University of Medicine, Japan
| |
Collapse
|
37
|
Di Bonito M, Studer M. Cellular and Molecular Underpinnings of Neuronal Assembly in the Central Auditory System during Mouse Development. Front Neural Circuits 2017; 11:18. [PMID: 28469562 PMCID: PMC5395578 DOI: 10.3389/fncir.2017.00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
During development, the organization of the auditory system into distinct functional subcircuits depends on the spatially and temporally ordered sequence of neuronal specification, differentiation, migration and connectivity. Regional patterning along the antero-posterior axis and neuronal subtype specification along the dorso-ventral axis intersect to determine proper neuronal fate and assembly of rhombomere-specific auditory subcircuits. By taking advantage of the increasing number of transgenic mouse lines, recent studies have expanded the knowledge of developmental mechanisms involved in the formation and refinement of the auditory system. Here, we summarize several findings dealing with the molecular and cellular mechanisms that underlie the assembly of central auditory subcircuits during mouse development, focusing primarily on the rhombomeric and dorso-ventral origin of auditory nuclei and their associated molecular genetic pathways.
Collapse
|
38
|
Síndrome hipoparathyroidism, deafness and renal displasia o síndrome de Barakat otra asociación de sordera y nefropatía. Nefrologia 2016; 36:188-9. [DOI: 10.1016/j.nefro.2015.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/16/2015] [Accepted: 04/18/2015] [Indexed: 11/18/2022] Open
|
39
|
Okawa T, Yoshida M, Usui T, Kudou T, Iwasaki Y, Fukuoka K, Takahashi N, Uehara Y, Oiso Y. A novel loss-of-function mutation of GATA3 (p.R299Q) in a Japanese family with Hypoparathyroidism, Deafness, and Renal Dysplasia (HDR) syndrome. BMC Endocr Disord 2015; 15:66. [PMID: 26514990 PMCID: PMC4627412 DOI: 10.1186/s12902-015-0065-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/25/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome is a rare autosomal dominant disorder caused by mutations in the zinc finger transcription factor gene, GATA3. GATA3 has 2 zinc finger domains, which play an important role in the increase in target gene transcription activity. CASE PRESENTATION A 50-year-old woman and her 27-year-old daughter were followed up because of hypoparathyroidism. They had bilateral sensorineural deafness. Abdominal computed tomography scanning revealed renal dysplasia in the mother, but no renal anomaly in the daughter. Direct sequencing of GATA3 gene revealed a novel heterozygous missense mutation at codon 299 (p.R299Q) in exon 4. This mutation is located at the junction between the 2 zinc fingers. The structure prediction showed that it caused a conformation change in this junction area, affecting the spatial position of the zinc fingers. Additionally, a more marked conformation change was observed in the N-terminal zinc finger region compared to that in the C-terminal region. Functional analysis of this mutant protein using an in vitro luciferase reporter assay system confirmed that the mutation abolished the enhancing effects of wild-type GATA3 on the promoter activity of the consensus GATA responsive element and that of human PTH gene. CONCLUSION We identified a novel R299Q mutation in GATA3 in a Japanese family with HDR syndrome. We confirmed that R299Q is a loss-of-function mutation, due to the extensive conformational change in the zinc fingers of GATA3.
Collapse
Affiliation(s)
- Tetsuji Okawa
- Department of Endocrinology and Diabetes, Nagoya Ekisaikai Hospital, 4-66 Shounen-cho, Nakagawawa-ku, Nagoya, 454-8502, Japan.
| | - Masanori Yoshida
- Department of Endocrinology and Diabetes, Nagoya Ekisaikai Hospital, 4-66 Shounen-cho, Nakagawawa-ku, Nagoya, 454-8502, Japan.
| | - Takeshi Usui
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, 612-8555, Japan.
| | - Takahiro Kudou
- Laboratory of Protein Informatics, Research Center for State-of-the-Art Functional Protein Analysis, Institute for Protein Research, Osaka University, Suita, 565-0871, Japan.
| | | | - Kazuki Fukuoka
- Department of Endocrinology and Diabetes, Nagoya Ekisaikai Hospital, 4-66 Shounen-cho, Nakagawawa-ku, Nagoya, 454-8502, Japan.
| | - Norio Takahashi
- Department of Endocrinology and Diabetes, Nagoya Ekisaikai Hospital, 4-66 Shounen-cho, Nakagawawa-ku, Nagoya, 454-8502, Japan.
| | - Yuka Uehara
- Department of Endocrinology and Diabetes, Nagoya Ekisaikai Hospital, 4-66 Shounen-cho, Nakagawawa-ku, Nagoya, 454-8502, Japan.
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
40
|
Chen L, Chen B, Leng W, Lui X, Wu Q, Ouyang X, Liang Z. Identification of a novel de novo GATA3 mutation in a patient with HDR syndrome. J Int Med Res 2015; 43:718-724. [PMID: 26268891 DOI: 10.1177/0300060515591065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/18/2015] [Indexed: 11/15/2022] Open
Abstract
We describe the case of a 21-year-old male with hypocalcaemia, hyperphosphataemia, recurrent limb twitch, deafness, proteinuria, increased serum creatinine and urea nitrogen levels, and shrinkage of both kidneys. Brain computed tomography showed intracranial calcifications. The patient was diagnosed with hypoparathyroidism, sensorineural deafness and renal dysplasia (HDR) syndrome. DNA sequence analysis of the GATA3 gene showed a novel de novo mutation, c. 529dupC (p. Arg177profs*126), in exon 2, resulting in a frameshift mutation with a premature stop codon after a new 126 amino acid sequence. We provide further evidence that HDR syndrome is caused by haploinsufficiency of GATA3.
Collapse
Affiliation(s)
- Liu Chen
- Department of Endocrinology, First Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Bing Chen
- Department of Endocrinology, First Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Wuilin Leng
- Department of Endocrinology, First Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Xiaotian Lui
- Department of Endocrinology, First Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Qinan Wu
- Department of Endocrinology, First Affiliated Hospital of Third Military Medical University, Chongqing, China
| | - Xinshou Ouyang
- Section of Digestive Disease, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ziwen Liang
- Department of Endocrinology, First Affiliated Hospital of Third Military Medical University, Chongqing, China
| |
Collapse
|
41
|
Abstract
Osteoprotegerin (OPG) is a key regulator of bone remodeling. Mutations in OPG are involved in a variety of human diseases. We have shown that cochlear spiral ganglion cells secrete OPG at high levels and lack of OPG causes sensorineural hearing loss in addition to the previously described conductive hearing loss. In order to study the regulation of OPG expression, we conducted a database search on regulatory elements in the promoter region of the OPG gene, and identified two potential GATA-3 binding sites. Using luciferase assays and site directed mutagenesis, we demonstrate that these two elements are GATA-3 responsive and support GATA-3 transactivation in human HEK and HeLa cells. The expression of wild type GATA-3 activated OPG mRNA and protein expression, while the expression of a dominant negative mutant of GATA-3 or a GATA-3 shRNA construct reduced OPG mRNA and protein levels. GATA-3 deficient cells generated by expressing a GATA-3 shRNA construct were sensitive to apoptosis induced by etoposide and TNF-α. This apoptotic effect could be partly prevented by the co-treatment with exogenous OPG. Our results suggest new approaches to rescue diseases due to GATA-3 deficiency – such as in hypoparathyroidism, sensorineural deafness, and renal (HDR) syndrome – by OPG therapy.
Collapse
Affiliation(s)
- Shyan-Yuan Kao
- Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary
| | - Konstantina M Stankovic
- 1] Eaton Peabody Laboratories and Department of Otolaryngology, Massachusetts Eye and Ear Infirmary [2] Department of Otology and Laryngology, and Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Kostoglou-Athanassiou I, Stefanopoulos D, Karfi A, Athanassiou P. Vitamin D deficiency in a patient with HDR syndrome. BMJ Case Rep 2015; 2015:bcr-2014-208290. [PMID: 26156834 DOI: 10.1136/bcr-2014-208290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The case of a patient with clinical symptoms, laboratory and imaging findings of hypoparathyroidism, sensorineural deafness, renal dysplasia HDR, or Barakat syndrome (hypoparathyroidism, deafness, renal dysplasia), and vitamin D deficiency, is presented. A Caucasian man aged 51 years with a history of chronic hypocalcaemia since childhood, was admitted with hypertonia of the body and extremities, and loss of consciousness. On admission, he was found to have severe hypocalcaemia, hyperphosphataemia, severe hypoparathyroidism, low serum magnesium and mild renal insufficiency. Calcium gluconate was administered intravenously supplemented with magnesium, and the patient recovered consciousness while clinical and laboratory findings improved. Evaluation revealed left renal aplasia and sensorineural deafness affecting both ears. Vitamin D deficiency was also present. He was given calcium and vitamin D supplements orally, and the hypocalcaemia was corrected. This case is described as it is an extremely rare case of HDR syndrome with concurrent vitamin D deficiency.
Collapse
Affiliation(s)
| | | | - Areti Karfi
- Department of Endocrinology, Red Cross Hospital, Athens, Greece
| | | |
Collapse
|
43
|
Döneray H, Usui T, Kaya A, Dönmez AS. The First Turkish Case of Hypoparathyroidism, Deafness and Renal Dysplasia (HDR) Syndrome. J Clin Res Pediatr Endocrinol 2015; 7:140-3. [PMID: 26316437 PMCID: PMC4563186 DOI: 10.4274/jcrpe.1874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is an autosomal dominant genetic disorder characterized by hypoparathyroidism, sensorineural deafness and renal dysplasia. We herein present the first Turkish patient with HDR syndrome, who has a p.R367X mutation. This report indicates that p.R367X is not a mutation specific for the Far Eastern populations and also that urological findings in infants with hypoparathyroidism should be carefully examined because clinical findings relating to the p.R367X mutation may show a variable age of onset.
Collapse
Affiliation(s)
- Hakan Döneray
- Atatürk University Faculty of Medicine, Department of Pediatric Endocrinology, Erzurum, Turkey Phone: +90 535 944 43 07 E-mail:
| | - Takeshi Usui
- Kyoto Medical Center, National Hospital Organization, Clinical Research Institute, Kyoto, Japan
| | - Avni Kaya
- Atatürk University Faculty of Medicine, Department of Pediatric Endocrinology, Erzurum, Turkey
| | - Ayşe Sena Dönmez
- Atatürk University Faculty of Medicine, Department of Pediatrics, Erzurum, Turkey
| |
Collapse
|
44
|
Hiramatsu R, Ubara Y, Tajima T, Usui T, Namba K, Takeuchi Y, Sawa N, Hasegawa E, Takaichi K. Tumoral calcinosis in a patient with hypoparathyroidism, sensorineural deafness, and renal dysplasia syndrome undergoing hemodialysis. Clin Case Rep 2015; 3:73-5. [PMID: 25767699 PMCID: PMC4352355 DOI: 10.1002/ccr3.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/06/2014] [Accepted: 06/01/2014] [Indexed: 11/10/2022] Open
Abstract
We describe a hemodialysis patient with hypoparathyroidism due to HDR (hypoparathyroidism, sensorineural deafness, and renal dysplasia) syndrome caused by GATA3 mutation. She presents tumoral calcinosis which is a rare complication of end-stage renal failure. A novel mutation of GATA3 is identified in this patient.
Collapse
Affiliation(s)
- Rikako Hiramatsu
- Nephrology Center, Toranomon Hospital and Okinaka Memorial Institute for Medical Research Tokyo, Japan
| | - Yoshifumi Ubara
- Nephrology Center, Toranomon Hospital and Okinaka Memorial Institute for Medical Research Tokyo, Japan
| | - Toshihiro Tajima
- Department of Pediatrics, Hokkaido University School of Medicine Sapporo, Japan
| | - Takeshi Usui
- Division of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center Kyoto, Japan
| | - Kazutaka Namba
- Division of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center Kyoto, Japan
| | - Yasuhiro Takeuchi
- Toranomon Hospital Endocrine Center and Okinaka Memorial Institute for Medical Research Tokyo, Japan
| | - Naoki Sawa
- Nephrology Center, Toranomon Hospital and Okinaka Memorial Institute for Medical Research Tokyo, Japan
| | - Eiko Hasegawa
- Nephrology Center, Toranomon Hospital and Okinaka Memorial Institute for Medical Research Tokyo, Japan
| | - Kenmei Takaichi
- Nephrology Center, Toranomon Hospital and Okinaka Memorial Institute for Medical Research Tokyo, Japan
| |
Collapse
|
45
|
Shim YS, Choi W, Hwang IT, Yang S. Hypoparathyroidism, sensorineural deafness, and renal dysgenesis syndrome with a GATA3 mutation. Ann Pediatr Endocrinol Metab 2015; 20:59-63. [PMID: 25883929 PMCID: PMC4397275 DOI: 10.6065/apem.2015.20.1.59] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 11/26/2022] Open
Abstract
Hypoparathyroidism, sensorineural deafness, and renal dysgenesis syndrome is an autosomal dominant disease caused by mutations in the GATA3 gene on chromosome 10p15. We identified a patient diagnosed with hypoparathyroidism who also had a family history of hypoparathyroidism and sensorineural deafness, present in the father. The patient was subsequently diagnosed and found to be a heterozygote for an insertion mutation c.255_256ins4 (GTGC) in exon 2 of GATA3. His father was also confirmed to have the same mutation in GATA3.
Collapse
Affiliation(s)
- Yong Suk Shim
- Department of Pediatrics, Hallym University College of Medicine, Seoul, Korea
| | - Woohyeok Choi
- Department of Pediatrics, Hallym University College of Medicine, Seoul, Korea
| | - Il Tae Hwang
- Department of Pediatrics, Hallym University College of Medicine, Seoul, Korea
| | - Seung Yang
- Department of Pediatrics, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Abstract
OBJECTIVE To report the auditory and vestibular phenotypes of patients with GATA3 mutation. STUDY DESIGN Case series of 6 patients. SETTING Tertiary referral center. PATIENTS All patients had the classic triad of GATA3 deficiency: hypoparathyroidism, hearing loss, and renal dysplasia. Patients (29-60 yr old; mean age, 42.5 yr; 3 male and 3 female subjects) were confirmed to have heterozygous mutations involving GATA3 by Sanger sequencing. INTERVENTIONS Behavioral audiometry, distortion product otoacoustic emissions (DPOAEs), and auditory brainstem responses (ABRs) were used to assess hearing. Rotational vestibular testing was used to assess vestibular function. RESULTS All patients with GATA3 mutation presented with hearing loss during childhood. The mean 3-frequency (0.5/1/2 kHz) pure tone average was 67 dB HL (range, 50-83 dB HL; SD, 9.3). The average speech discrimination score was 73% (range, 36%-100%; SD, 15.9). DPOAEs were absent in all patients. ABRs were remarkably robust and provided no evidence of retrocochlear dysfunction. Some patients complained of dizziness, but rotary chair testing was normal across participants for whom testing occurred. CONCLUSION Patients with GATA3 mutation present with early-onset sensorineural hearing loss (SNHL). DPOAEs were absent, supporting outer hair cell dysfunction, whereas ABRs were present and robust. Rotational vestibular testing revealed no evidence of abnormal horizontal semicircular canal function.
Collapse
|
47
|
Value of GATA3 Immunostaining in the Diagnosis of Parathyroid Tumors. Appl Immunohistochem Mol Morphol 2014; 22:756-61. [DOI: 10.1097/pai.0000000000000007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Zhu ZY, Zhou QL, Ni SN, Gu W. GATA3 mutation in a family with hypoparathyroidism, deafness and renal dysplasia syndrome. World J Pediatr 2014; 10:278-80. [PMID: 25124981 DOI: 10.1007/s12519-014-0505-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 03/20/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND The hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is an autosomal dominant disorder primarily caused by GATA3 gene mutation. We report here a case that both of a Chinese boy and his father had HDR syndrome which caused by a novel mutation of GATA3. METHODS Polymerase chain reaction and DNA sequencing was performed to detect the exons of the GATA3 gene for mutation analysis. RESULTS Sequence analysis of GATA3 revealed a heterozygous nonsense mutation in this family: a mutation of GATA3 at exon 2 (c.515C >A) that resulted in a premature stop at codon 172 (p.S172X) with a loss of two zinc finger domains. CONCLUSION We identified a novel nonsense mutation which will expand the spectrum of HDR-associated GATA3 mutations.
Collapse
Affiliation(s)
- Zi-Yang Zhu
- Department of Pediatric Endocrinology, Nanjing Children's Hospital Affiliated to Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | | | | | | |
Collapse
|
49
|
van Beelen E, Leijendeckers JM, Admiraal RJC, Huygen PLM, Hoefsloot LH, Pennings RJE, Snik AFM, Kunst HPM. Audiometric characteristics of a dutch family with a new mutation in GATA3 causing HDR syndrome. Audiol Neurootol 2014; 19:106-14. [PMID: 24434941 DOI: 10.1159/000356303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022] Open
Abstract
We present the case of a Dutch family with a new mutation (c523_528dup) in GATA3 causing HDR syndrome. HDR syndrome is characterised by hypoparathyroidism, deafness and renal defects. In this study, we describe the audiometric characteristics of 5 patients from this family. Their hearing impairment was congenital, bilateral and symmetric. Audiograms showed mild-to-moderate hearing impairment with a flat audiogram configuration. Higher frequencies tended to be affected more strongly. Cross-sectional analyses showed no progression, and a mean audiogram was established. Psychophysical measurements in 3 HDR patients - including speech reception in noise, loudness scaling, gap detection and difference limen for frequency - were obtained to assess hearing function in greater detail. Overall, the results of the psychophysical measurements indicated characteristics of outer hair cell loss. CT scanning showed no anomalies in 3 of the HDR patients. Although 2 patients displayed vestibular symptoms, no anomalies in the vestibular system were found by vestibulo-ocular examination. Our results are in agreement with the theory that outer hair cell malfunctioning can play a major role in HDR syndrome.
Collapse
Affiliation(s)
- E van Beelen
- Department of Otorhinolaryngology, Head and Neck Surgery, Radboud University, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Seizure, deafness, and renal failure: a case of barakat syndrome. Case Rep Nephrol 2013; 2013:261907. [PMID: 24527244 PMCID: PMC3914172 DOI: 10.1155/2013/261907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/08/2013] [Indexed: 11/22/2022] Open
Abstract
Barakat syndrome (also known as HDR syndrome) is an autosomal dominant disorder characterized by hypoparathyroidism, sensorineural deafness, and renal disease caused by mutation of the GATA3 gene located at chromosome 10p15. The exact prevalence of this disorder is not known but is very rare, with only about a dozen cases reported in the literature. Here, we report a case of 58-year-old man from Ardabil who presented with seizure due to hypocalcemia. Further history revealed bilateral deafness. Audiogram confirmed sensorineural hearing loss of both sides. His laboratory data were consistent with hypoparathyroidism and renal failure. He was diagnosed to have Barakat syndrome based on his clinical and laboratory data. In conclusion, we need to be aware of rare inherited conditions in a patient with abnormal physical and laboratory findings even though their initial presentation was seizure and hypocalcemia.
Collapse
|