1
|
Fang M, Liu R, Fang Y, Zhang D, Kong B. Emerging platelet-based drug delivery systems. Biomed Pharmacother 2024; 177:117131. [PMID: 39013224 DOI: 10.1016/j.biopha.2024.117131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Drug delivery systems are becoming increasingly utilized; however, a major challenge in this field is the insufficient target of tissues or cells. Although efforts with engineered nanoparticles have shown some success, issues with targeting, toxicity and immunogenicity persist. Conversely, living cells can be used as drug-delivery vehicles because they typically have innate targeting mechanisms and minimal adverse effects. As active participants in hemostasis, inflammation, and tumors, platelets have shown great potential in drug delivery. This review highlights platelet-based drug delivery systems, including platelet membrane engineering, platelet membrane coating, platelet cytoplasmic drug loading, genetic engineering, and synthetic/artificial platelets for different applications.
Collapse
Affiliation(s)
- Mengkun Fang
- Department of haematology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Rui Liu
- Department of haematology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210002, China
| | - Yile Fang
- Department of haematology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210002, China.
| | - Dagan Zhang
- Department of haematology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210002, China.
| | - Bin Kong
- Department of haematology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210002, China; Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China; Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China.
| |
Collapse
|
2
|
Assessment of medullary and extramedullary myelopoiesis in cardiovascular diseases. Pharmacol Res 2021; 169:105663. [PMID: 33979688 DOI: 10.1016/j.phrs.2021.105663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022]
Abstract
Recruitment of innate immune cells and their accumulation in the arterial wall and infarcted myocardium has been recognized as a central feature of atherosclerosis and cardiac ischemic injury, respectively. In both, steady state and under pathological conditions, majority of these cells have a finite life span and are continuously replenished from haematopoietic stem/progenitor cell pool residing in the bone marrow and extramedullary sites. While having a crucial role in the cardiovascular disease development, proliferation and differentiation of innate immune cells within haematopoietic compartments is greatly affected by the ongoing cardiovascular pathology. In the current review, we summarize key cells, processes and tissue compartments that are involved in myelopoiesis under the steady state, during atherosclerosis development and in myocardial infarction.
Collapse
|
3
|
Chen S, Han Y, Ouyang Q, Lu J, Zhang Q, Yang S, Wang J, Huang H, Liu H, Shao Z, Li H, Chen Z, Sun S, Geng C, Lu J, Sun J, Wang J, Xu B. Randomized and dose-escalation trials of recombinant human serum albumin /granulocyte colony-stimulating factor in patients with breast cancer receiving anthracycline-containing chemotherapy. BMC Cancer 2021; 21:341. [PMID: 33789616 PMCID: PMC8010964 DOI: 10.1186/s12885-021-08093-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To evaluate the efficacy and safety of recombinant human serum albumin /granulocyte colony-stimulating factor (rHSA/G-CSF) in breast cancer following receipt of cytotoxic agents. METHODS The phase 1b trial assessed the pharmacokinetics, pharmacodynamics, and safety of dose-escalation, ranging from rHSA/G-CSF 1800 μg, 2100 μg, and 2400 μg. Randomized controlled phase 2b trial was further conducted to ensure the comparative efficacy and safety of rHSA/G-CSF 2400 μg and rhG-CSF 5 μg/kg. In multicenter, randomized, open-label, parallel, phase 2 study, participants treated with anthracycline-containing chemotherapy were assigned in a ratio 1:1:1 to receive double delivery of rHSA/G-CSF 1200 μg, 1500 μg, and continuous rhG-CSF 5 μg/kg. RESULTS Between December 16, 2014, to July 23, 2018, a total of 320 patients were enrolled, including 25 individuals in phase 1b trial, 80 patients in phase 2b trial, and 215 participants in phase 2 study. The mean duration of agranulocytosis during the first chemotherapeutic intermission was observed as 1.14 ± 1.35 days in rHSA/G-CSF 1500 μg, which was comparable with that of 1.07 ± 0.97 days obtained in rhG-CSF control (P = 0.71). Safety profiles were assessed to be acceptable ranging from rHSA/G-CSF 1800 μg to 2400 μg, while the double delivery of HSA/G-CSF 2400 μg failed to meet the noninferiority in comparison with rhG-CSF. CONCLUSION The prospective randomized controlled trials demonstrated that rHSA/G-CSF was efficacious and well-tolerated with an approachable frequency and expense of application for prophylactic management of agranulocytosis. The double delivery of rHSA/G-CSF 1500 μg in comparisons with paralleling G-CSF preparations is warranted in the phase 3 trial. TRIAL REGISTRATION ClinicalTrials.gov identifiers: NCT02465801 (11/17/2014), NCT03246009 (08/08/2017), NCT03251768 (08/07/2017).
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yiqun Han
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Quchang Ouyang
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jianguo Lu
- Department of General Surgery, Xi'an Tangdu Hospital, Xi'an, Shanxi, China
| | - Qingyuan Zhang
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shun'e Yang
- Department of Breast Cancer and Lymphoma, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jingfen Wang
- Department of Internal Medicine, Linyi Tumor Hospital, Linyi, Shandong, China
| | - Haixin Huang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Hong Liu
- Department of Breast Surgery, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhimin Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hui Li
- Department of Breast Surgery, Sichuan Province Tumor Hospital, Chengdu, Sichuan, China
| | - Zhendong Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sanyuan Sun
- Department of Medical Oncology, Central Hospital of Xuzhou, the Cancer Institute of Southeast University, Xuzhou, Jiangsu, China
| | - Cuizhi Geng
- First Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Junguo Lu
- Department of Medical Oncology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Jianwei Sun
- Department of Tumor, Yunnan First People's Hospital, Kunming, Yunnan, China
| | - Jiayu Wang
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
4
|
Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol 2020; 13:157. [PMID: 33228751 PMCID: PMC7686726 DOI: 10.1186/s13045-020-00994-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Aging drives the genetic and epigenetic changes that result in a decline in hematopoietic stem cell (HSC) functioning. Such changes lead to aging-related hematopoietic/immune impairments and hematopoietic disorders. Understanding how such changes are initiated and how they progress will help in the development of medications that could improve the quality life for the elderly and to treat and possibly prevent aging-related hematopoietic diseases. Here, we review the most recent advances in research into HSC aging and discuss the role of HSC-intrinsic events, as well as those that relate to the aging bone marrow niche microenvironment in the overall processes of HSC aging. In addition, we discuss the potential mechanisms by which HSC aging is regulated.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Department of Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Department of Pathology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
5
|
Zhang Z, Zhang Y, Gao M, Cui X, Yang Y, van Duijn B, Wang M, Hu Y, Wang C, Xiong Y. Steamed Panax notoginseng Attenuates Anemia in Mice With Blood Deficiency Syndrome via Regulating Hematopoietic Factors and JAK-STAT Pathway. Front Pharmacol 2020; 10:1578. [PMID: 32038252 PMCID: PMC6985777 DOI: 10.3389/fphar.2019.01578] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Panax notoginseng (Burk.) F. H. Chen is a medicinal herb used to treat blood disorders since ancient times, of which the steamed form exhibits the anti-anemia effect and acts with a “blood-tonifying” function according to traditional use. The present study aimed to investigate the anti-anemia effect and underlying mechanism of steamed P. notoginseng (SPN) on mice with blood deficiency syndrome induced by chemotherapy. Blood deficiency syndrome was induced in mice by cyclophosphamide and acetylphenylhydrazine. A number of peripheral blood cells and organs (liver, kidney, and spleen) coefficients were measured. The mRNA expression of hematopoietic function-related cytokines in the bone marrow of mice was detected by RT-qPCR. The janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway was screened based on our previous analysis by network pharmacology. The expression of related proteins and cell cycle factors predicted in the pathway was determined by Western blot and RT-qPCR. SPN could significantly increase the numbers of peripheral blood cells and reverse the enlargement of spleen in a dose-dependent manner. The quantities of related hematopoietic factors in bone marrow were also increased significantly after SPN administration. SPN was involved in the cell cycle reaction and activation of immune cells through the JAK-STAT pathway, which could promote the hematopoiesis.
Collapse
Affiliation(s)
- Zejun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yiming Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Min Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Bert van Duijn
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands.,Fytagoras BV, Leiden, Netherlands
| | - Mei Wang
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands.,LU-European Center for Chinese Medicine, Leiden University, Leiden, Netherlands.,SUBioMedicine BV, Leiden, Netherlands
| | - Yupiao Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Chengxiao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yin Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Institute of Biology Leiden, Leiden University, Leiden, Netherlands.,Fytagoras BV, Leiden, Netherlands.,LU-European Center for Chinese Medicine, Leiden University, Leiden, Netherlands
| |
Collapse
|
6
|
Pan Y, Liang H, Liu H, Li D, Chen X, Li L, Zhang CY, Zen K. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. THE JOURNAL OF IMMUNOLOGY 2013; 192:437-46. [PMID: 24307738 DOI: 10.4049/jimmunol.1301790] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Platelets play a significant role in atherosclerosis, stroke, and asthma through active interaction with neutrophils, monocytes, and vascular endothelial cells. The mechanism underlying these intercellular interactions, however, is incompletely understood. In this study, we report that platelets can remotely modulate vascular endothelial cell apoptosis through releasing microRNA-223 (miR-223)-containing microvesicles (MVs). First, platelets expressed abundant miRNAs, and miR-223 had the highest level of expression. Platelet miR-223 and other miRNAs can be upregulated by the stimulation with thrombopoietin (TPO) or thrombin. Unlike leukocytes, platelets contained high levels of pre-miRNAs, and upregulation of mature platelet miRNAs by TPO was correlated with decreased pre-miRNAs. Second, under stimulation with TPO, platelets released a large amount of MVs, which also contain higher levels of miR-223. Elevation of miR-223 inside circulating platelet MVs (P-MVs) was also observed in plasma samples from patients with enteritis, hepatitis, nephritis, or atherosclerosis. Third, incubation of P-MVs with HUVECs, which had significantly lower levels of miR-223 than platelets, showed that P-MVs effectively delivered miR-223 into HUVECs. Finally, in HUVECs, exogenous platelet miR-223 decreased the level of insulin-like growth factor 1 receptor and thus promoted HUVEC apoptosis induced by advanced glycation end products. The proapoptotic effect of P-MVs on HUVECs was largely abolished by depleting cellular miR-223 using anti-miR-223 antisense oligonucleotide. In conclusion, our study presents the first evidence, to our knowledge, that platelet-released miR-223 promotes advanced glycation end product-induced vascular endothelial cell apoptosis via targeting insulin-like growth factor 1 receptor.
Collapse
Affiliation(s)
- Yi Pan
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, Nanjing, Jiangsu 210093, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Yanay O, Dale DC, Osborne WRA. Repeated lentivirus-mediated granulocyte colony-stimulating factor administration to treat canine cyclic neutropenia. Hum Gene Ther 2012; 23:1136-43. [PMID: 22845776 DOI: 10.1089/hum.2012.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cyclic neutropenia occurs in humans and gray collie dogs, is characterized by recurrent neutropenia, and is treated by repeated injections of recombinant granulocyte colony-stimulating factor (rG-CSF). As dose escalation of lentivirus may be clinically necessary, we monitored the outcome of four sequential intramuscular injections of G-CSF-lentivirus (3 × 10(7) IU/kg body weight) to a normal dog and a gray collie. In the normal dog absolute neutrophil counts were significantly increased after each dose of virus, with mean levels of 27.75 ± 3.00, 31.50 ± 1.40, 35.05 ± 1.68, and 43.88 ± 2.94 × 10(3) cells/μl, respectively (p<0.001), and elevated neutrophil counts of 31.18 ± 7.81 × 10(3) cells/μl were maintained for more than 6 years with no adverse effects. A gray collie dog with a mean count of 1.94 ± 1.48 × 10(3) cells/μl received G-CSF-lentivirus and we observed sustained elevations in neutrophil levels for more than 5 months with a mean of 26.00 ± 11.00 × 10(3) cells/μl, significantly increased over the pretreatment level (p<0.001). After the second and third virus administrations mean neutrophil counts of 15.80 ± 6.14 and 11.52 ± 4.90 × 10(3) cells/μl were significantly reduced compared with cell counts after the first virus administration (p<0.001). However, after the fourth virus administration mean neutrophil counts of 15.21 ± 4.50 × 10(3) cells/μl were significantly increased compared with the previous administration (p<0.05). Throughout the nearly 3 years of virus administrations the dog gained weight, was healthy, and showed neutrophil counts significantly higher than pretreatment levels (p<0.001). These studies suggest that patients with cyclic and other neutropenias may be treated with escalating doses of G-CSF-lentivirus to obtain a desired therapeutic neutrophil count.
Collapse
Affiliation(s)
- Ofer Yanay
- Department of Pediatrics, University of Washington, Seattle, 98109, USA
| | | | | |
Collapse
|
8
|
Avalos BR, Lazaryan A, Copelan EA. Can G-CSF Cause Leukemia in Hematopoietic Stem Cell Donors? Biol Blood Marrow Transplant 2011; 17:1739-46. [DOI: 10.1016/j.bbmt.2011.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 07/05/2011] [Indexed: 11/27/2022]
|
9
|
Ferretti G, Papaldo P. Acute myeloid leukaemia or myelodysplastic syndrome following use of granulocyte colony-stimulating factors during breast cancer adjuvant chemotherapy. Breast Cancer Res Treat 2007; 109:187-8. [PMID: 17616805 DOI: 10.1007/s10549-007-9639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 05/30/2007] [Indexed: 11/26/2022]
|