1
|
Schiffer JT, Swan DA, Prlic M, Lund JM. Herpes simplex virus-2 dynamics as a probe to measure the extremely rapid and spatially localized tissue-resident T-cell response. Immunol Rev 2019; 285:113-133. [PMID: 30129205 DOI: 10.1111/imr.12672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herpes simplex virus-2 infection is characterized by frequent episodic shedding in the genital tract. Expansion in HSV-2 viral load early during episodes is extremely rapid. However, the virus invariably peaks within 18 hours and is eliminated nearly as quickly. A critical feature of HSV-2 shedding episodes is their heterogeneity. Some episodes peak at 108 HSV DNA copies, last for weeks due to frequent viral re-expansion, and lead to painful ulcers, while others only reach 103 HSV DNA copies and are eliminated within hours and without symptoms. Within single micro-environments of infection, tissue-resident CD8+ T cells (TRM ) appear to contain infection within a few days. Here, we review components of TRM biology relevant to immune surveillance between HSV-2 shedding episodes and containment of infection upon detection of HSV-2 cognate antigen. We then describe the use of mathematical models to correlate large spatial gradients in TRM density with the heterogeneity of observed shedding within a single person. We describe how models have been leveraged for clinical trial simulation, as well as future plans to model the interactions of multiple cellular subtypes within mucosa, predict the mechanism of action of therapeutic vaccines, and describe the dynamics of 3-dimensional infection environment during the natural evolution of an HSV-2 lesion.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - David A Swan
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Martin Prlic
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jennifer M Lund
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Schiffer JT, Swan DA, Roychoudhury P, Lund JM, Prlic M, Zhu J, Wald A, Corey L. A Fixed Spatial Structure of CD8 + T Cells in Tissue during Chronic HSV-2 Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:1522-1535. [PMID: 30045971 DOI: 10.4049/jimmunol.1800471] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/21/2018] [Indexed: 11/19/2022]
Abstract
Tissue-resident CD8+ T cells (Trm) can rapidly eliminate virally infected cells, but their heterogeneous spatial distribution may leave gaps in protection within tissues. Although Trm patrol prior sites of viral replication, murine studies suggest they do not redistribute to adjacent uninfected sites to provide wider protection. We perform mathematical modeling of HSV-2 shedding in Homo sapiens and predict that infection does not induce enough Trm in many genital tract regions to eliminate shedding; a strict spatial distribution pattern of mucosal CD8+ T cell density is maintained throughout chronic infection, and trafficking of Trm across wide genital tract areas is unlikely. These predictions are confirmed with spatial analysis of CD8+ T cell distribution in histopathologic specimens from human genital biopsies. Further simulations predict that the key mechanistic correlate of protection following therapeutic HSV-2 vaccination would be an increase in total Trm rather than spatial reassortment of these cells. The fixed spatial structure of Trm induced by HSV-2 is sufficient for rapid elimination of infected cells but only in a portion of genital tract microregions.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; .,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Medicine, University of Washington, Seattle, WA 98195
| | - Dave A Swan
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Pavitra Roychoudhury
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jennifer M Lund
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Martin Prlic
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Jia Zhu
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Laboratory Medicine, University of Washington, Seattle, WA; and
| | - Anna Wald
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Medicine, University of Washington, Seattle, WA 98195.,Department of Laboratory Medicine, University of Washington, Seattle, WA; and.,Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Lawrence Corey
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Medicine, University of Washington, Seattle, WA 98195.,Department of Laboratory Medicine, University of Washington, Seattle, WA; and
| |
Collapse
|
3
|
Topalis D, Gillemot S, Snoeck R, Andrei G. Distribution and effects of amino acid changes in drug-resistant α and β herpesviruses DNA polymerase. Nucleic Acids Res 2016; 44:9530-9554. [PMID: 27694307 PMCID: PMC5175367 DOI: 10.1093/nar/gkw875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/13/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
Emergence of drug-resistance to all FDA-approved antiherpesvirus agents is an increasing concern in immunocompromised patients. Herpesvirus DNA polymerase (DNApol) is currently the target of nucleos(t)ide analogue-based therapy. Mutations in DNApol that confer resistance arose in immunocompromised patients infected with herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), and to lesser extent in herpes simplex virus 2 (HSV-2), varicella zoster virus (VZV) and human herpesvirus 6 (HHV-6). In this review, we present distinct drug-resistant mutational profiles of herpesvirus DNApol. The impact of specific DNApol amino acid changes on drug-resistance is discussed. The pattern of genetic variability related to drug-resistance differs among the herpesviruses. Two mutational profiles appeared: one favoring amino acid changes in the Palm and Finger domains of DNApol (in α-herpesviruses HSV-1, HSV-2 and VZV), and another with mutations preferentially in the 3′-5′ exonuclease domain (in β-herpesvirus HCMV and HHV-6). The mutational profile was also related to the class of compound to which drug-resistance emerged.
Collapse
Affiliation(s)
- D Topalis
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - S Gillemot
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - R Snoeck
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - G Andrei
- Rega Institute for Medical Research, Department Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium
| |
Collapse
|