1
|
Bauer A, Hegen H, Reindl M. Body fluid markers for multiple sclerosis and differential diagnosis from atypical demyelinating disorders. Expert Rev Mol Diagn 2024; 24:283-297. [PMID: 38533708 DOI: 10.1080/14737159.2024.2334849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION Body fluid markers could be helpful to predict the conversion into clinically definite multiple sclerosis (MS) in people with a first demyelinating event of the central nervous system (CNS). Consequently, biomarkers such as oligoclonal bands, which are integrated in the current MS diagnostic criteria, could assist early MS diagnosis. AREAS COVERED This review examines existing knowledge on a broad spectrum of body fluid markers in people with a first CNS demyelinating event, explores their potential to predict conversion to MS, to assess MS disease activity, as well as their utility to differentiate MS from atypical demyelinating disorders such as neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein associated disease. EXPERT OPINION This field of research has shown a dramatic increase of evidence, especially in the last decade. Some biomarkers are already established in clinical routine (e.g. oligoclonal bands) while others are currently implemented (e.g. kappa free light chains) or considered as breakthroughs (e.g. neurofilament light). Determination of biomarkers poses challenges for continuous monitoring, especially if exclusively detectable in cerebrospinal fluid. A handful of biomarkers are measurable in blood which holds a significant potential.
Collapse
Affiliation(s)
- Angelika Bauer
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Hegen
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Giuliano P, La Rosa G, Capozzi S, Cassano E, Damiano S, Habetswallner F, Iodice R, Marra M, Pavone LM, Quarantelli M, Vitelli G, Santillo M, Paternò R. A Blood Test for the Diagnosis of Multiple Sclerosis. Int J Mol Sci 2024; 25:1696. [PMID: 38338973 PMCID: PMC10855725 DOI: 10.3390/ijms25031696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune chronic disease characterized by inflammation and demyelination of the central nervous system (CNS). Despite numerous studies conducted, valid biomarkers enabling a definitive diagnosis of MS are not yet available. The aim of our study was to identify a marker from a blood sample to ease the diagnosis of MS. In this study, since there is evidence connecting the serotonin pathway to MS, we used an ELISA (Enzyme-Linked Immunosorbent Assay) to detect serum MS-specific auto-antibodies (auto-Ab) against the extracellular loop 1 (ECL-1) of the 5-hydroxytryptamine (5-HT) receptor subtype 2A (5-HT2A). We utilized an ELISA format employing poly-D-lysine as a pre-coating agent. The binding of 208 serum samples from controls, both healthy and pathological, and of 104 serum samples from relapsing-remitting MS (RRMS) patients was tested. We observed that the serum-binding activity in control cohort sera, including those with autoimmune and neurological diseases, was ten times lower compared to the RRMS patient cohort (p = 1.2 × 10-47), with a sensitivity and a specificity of 98% and 100%, respectively. These results show that in the serum of patients with MS there are auto-Ab against the serotonin receptor type 2A which can be successfully used in the diagnosis of MS due to their high sensitivity and specificity.
Collapse
Affiliation(s)
| | - Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (S.C.); (S.D.); (M.M.); (G.V.); (M.S.)
| | - Serena Capozzi
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (S.C.); (S.D.); (M.M.); (G.V.); (M.S.)
| | - Emanuele Cassano
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (E.C.); (R.I.)
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (S.C.); (S.D.); (M.M.); (G.V.); (M.S.)
| | | | - Rosa Iodice
- Dipartimento di Neuroscienze, Scienze Riproduttive ed Odontostomatologiche, Università di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy; (E.C.); (R.I.)
| | - Maurizio Marra
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (S.C.); (S.D.); (M.M.); (G.V.); (M.S.)
| | - Luigi Michele Pavone
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy;
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, Consiglio Nazionale delle Ricerche (CNR), Via De Amicis 95, 80145 Naples, Italy;
| | - Giuseppe Vitelli
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (S.C.); (S.D.); (M.M.); (G.V.); (M.S.)
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (S.C.); (S.D.); (M.M.); (G.V.); (M.S.)
| | - Roberto Paternò
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy; (G.L.R.); (S.C.); (S.D.); (M.M.); (G.V.); (M.S.)
| |
Collapse
|
3
|
Nazir FH, Wiberg A, Müller M, Mangsbo S, Burman J. Antibodies from serum and CSF of multiple sclerosis patients bind to oligodendroglial and neuronal cell-lines. Brain Commun 2023; 5:fcad164. [PMID: 37274830 PMCID: PMC10233900 DOI: 10.1093/braincomms/fcad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Multiple sclerosis is a highly complex and heterogeneous disease. At the onset it often presents as a clinically isolated syndrome. Thereafter relapses are followed by periods of remissions, but eventually, most patients develop secondary progressive multiple sclerosis. It is widely accepted that autoantibodies are important to the pathogenesis of multiple sclerosis, but hitherto it has been difficult to identify the target of such autoantibodies. As an alternative strategy, cell-based methods of detecting autoantibodies have been developed. The objective of this study was to explore differences in the binding of antibodies from sera and CSF of multiple sclerosis patients and controls to oligodendroglial and neuronal cell-lines, related to antibody type, immunoglobulin (IgG/IgM), matrix (serum/CSF) and disease course. The oligodendroglial and neuronal cell-lines were expanded in tissue culture flasks and transferred to 96-well plates at a concentration of 50 000 cells/well followed by fixation and blocking with bovine serum albumin. Sera and CSF samples, from healthy controls and multiple sclerosis patients, were incubated with the fixed cells. Epitope binding of immunoglobulins (IgG and IgM) in sera and CSF was detected using biotinylated anti-human IgM and IgG followed by avidin conjugated to horseradish peroxidase. Horseradish peroxidase activity was detected with 3,3',5,5'-tetramethylbenzidine substrate. Serum from 76 patients and 30 controls as well as CSF from 62 patients and 32 controls were investigated in the study. The binding was similar between clinically isolated syndrome patients and controls, whereas the largest differences were observed between secondary progressive multiple sclerosis patients and controls. Antibodies from multiple sclerosis patients (all disease course combined) bound more to all investigated cell-lines, irrespectively of matrix type, but binding of immunoglobulin G from CSF to human oligodendroglioma cell-line discriminated best between multiple sclerosis patients and controls with a sensitivity of 93% and a specificity of 96%. The cell-based enzyme linked immunosorbent assay (ELISA) was able to discriminate between multiple sclerosis patients and controls with a high degree of accuracy. The disease course was the major determinant for the antibody binding.
Collapse
Affiliation(s)
- Faisal Hayat Nazir
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala SE-751 85, Sweden
| | - Anna Wiberg
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala SE-751 85, Sweden
| | - Malin Müller
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala SE-751 85, Sweden
| | - Sara Mangsbo
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala SE-751 23, Sweden
| | - Joachim Burman
- Correspondence to: Joachim Burman Department of Medical Sciences, Neurology, Uppsala University, Uppsala SE-751 85, Sweden. E-mail:
| |
Collapse
|
4
|
Höftberger R, Lassmann H, Berger T, Reindl M. Pathogenic autoantibodies in multiple sclerosis - from a simple idea to a complex concept. Nat Rev Neurol 2022; 18:681-688. [PMID: 35970870 DOI: 10.1038/s41582-022-00700-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
The role of autoantibodies in multiple sclerosis (MS) has been enigmatic since the first description, many decades ago, of intrathecal immunoglobulin production in people with this condition. Some studies have indicated that MS pathology is heterogeneous, with an antibody-associated subtype - characterized by B cells (in varying quantities), antibodies and complement - existing alongside other subtypes with different pathologies. However, subsequent evidence suggested that some cases originally diagnosed as MS with autoantibody-mediated demyelination were more likely to be neuromyelitis optica spectrum disorder or myelin oligodendrocyte glycoprotein antibody-associated disease. These findings raise the important question of whether an autoantibody-mediated MS subtype exists and whether pathogenic MS-associated autoantibodies remain to be identified. Potential roles of autoantibodies in MS could range from specific antibodies defining the disease to a non-disease-specific amplification of cellular immune responses and other pathophysiological processes. In this Perspective, we review studies that have attempted to identify MS-associated autoantibodies and provide our opinions on their possible roles in the pathophysiology of MS.
Collapse
Affiliation(s)
- Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
5
|
Kaisey M, Lashgari G, Fert-Bober J, Ontaneda D, Solomon AJ, Sicotte NL. An Update on Diagnostic Laboratory Biomarkers for Multiple Sclerosis. Curr Neurol Neurosci Rep 2022; 22:675-688. [PMID: 36269540 DOI: 10.1007/s11910-022-01227-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE For many patients, the multiple sclerosis (MS) diagnostic process can be lengthy, costly, and fraught with error. Recent research aims to address the unmet need for an accurate and simple diagnostic process through discovery of novel diagnostic biomarkers. This review summarizes recent studies on MS diagnostic fluid biomarkers, with a focus on blood biomarkers, and includes discussion of technical limitations and practical applicability. RECENT FINDINGS This line of research is in its early days. Accurate and easily obtainable biomarkers for MS have not yet been identified and validated, but several approaches to uncover them are underway. Continue efforts to define laboratory diagnostic biomarkers are likely to play an increasingly important role in defining MS at the earliest stages, leading to better long-term clinical outcomes.
Collapse
Affiliation(s)
- Marwa Kaisey
- Cedars-Sinai Medical Center Department of Neurology, 127 S. San Vicente Blvd, A6600, Los Angeles, CA, 90048, USA.
| | - Ghazal Lashgari
- Cedars-Sinai Medical Center Department of Neurology, 127 S. San Vicente Blvd, A6600, Los Angeles, CA, 90048, USA
| | - Justyna Fert-Bober
- Cedars-Sinai Medical Center Department of Neurology, 127 S. San Vicente Blvd, A6600, Los Angeles, CA, 90048, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, 9500 Euclid Ave. U10 Mellen Center, Cleveland, OH, 44106, USA
| | - Andrew J Solomon
- Department of Neurological Sciences, Larner College of Medicine at the University of Vermont University Health Center, Arnold 2, 1 South Prospect Street, Burlington, VT, 05401, USA
| | - Nancy L Sicotte
- Cedars-Sinai Medical Center Department of Neurology, 127 S. San Vicente Blvd, A6600, Los Angeles, CA, 90048, USA
| |
Collapse
|
6
|
Anti-Kir4.1 Antibodies in Multiple Sclerosis: Specificity and Pathogenicity. Int J Mol Sci 2020; 21:ijms21249632. [PMID: 33348803 PMCID: PMC7765826 DOI: 10.3390/ijms21249632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022] Open
Abstract
The glial cells in the central nervous system express diverse inward rectifying potassium channels (Kir). They express multiple Kir channel subtypes that are likely to have distinct functional roles related to their differences in conductance, and sensitivity to intracellular and extracellular factors. Dysfunction in a major astrocyte potassium channel, Kir4.1, appears as an early pathological event underlying neuronal phenotypes in several neurological diseases. The autoimmune effects on the potassium channel have not yet been fully described in the literature. However, several research groups have reported that the potassium channels are an immune target in patients with various neurological disorders. In 2012, Srivastava et al. reported about Kir4.1, a new immune target for autoantibodies in patients with multiple sclerosis (MS). Follow-up studies have been conducted by several research groups, but no clear conclusion has been reached. Most follow-up studies, including ours, have reported that the prevalence of Kir4.1-seropositive patients with MS was lower than that in the initial study. Therefore, we extensively review studies on the method of antibody testing, seroprevalence of MS, and other neurological diseases in patients with MS. Finally, based on the role of Kir4.1 in MS, we consider whether it could be an immune target in this disease.
Collapse
|
7
|
B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 2019; 20:728-745. [PMID: 31712781 DOI: 10.1038/s41583-019-0233-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
|
8
|
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative autoimmune disease with a complex clinical course characterized by inflammation, demyelination, and axonal degeneration. Diagnosis of MS most commonly includes finding lesions in at least two separate areas of the central nervous system (CNS), including the brain, spinal cord, and optic nerves. In recent years, there has been a remarkable increase in the number of available treatments for MS. An optimal treatment is usually based on a personalized approach determined by an individual patient's prognosis and treatment risks. Biomarkers that can predict disability progression, monitor ongoing disease activity, and assess treatment response are integral in making important decisions regarding MS treatment. This review describes MS biomarkers that are currently being used in clinical practice; it also reviews and consolidates published findings from clinically relevant potential MS biomarkers in recent years. The work also discusses the challenges of validating and application of biomarkers in MS clinical practice.
Collapse
Affiliation(s)
- Anu Paul
- Department of Neurology, Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Manuel Comabella
- Department of Neurology, MS Centre of Catalonia, Vall d'Hebron University Hospital, Barcelona 08035, Spain
| | - Roopali Gandhi
- Department of Neurology, Ann Romney Center for Neurological Diseases, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
9
|
|
10
|
Marino M, Frisullo G, Di Sante G, Samengo DM, Provenzano C, Mirabella M, Pani G, Ria F, Bartoccioni E. Low reliability of anti-KIR4.1 83-120 peptide auto-antibodies in multiple sclerosis patients. Mult Scler 2017; 24:910-918. [PMID: 28548026 DOI: 10.1177/1352458517711275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease for which auto-antibodies fully validated as diagnostic and prognostic biomarkers are widely desired. Recently, an immunoreactivity against the inward rectifying potassium channel 4.1 (KIR4.1) has been reported in a large proportion of a group of MS patients, with amino acids 83-120 being the major epitope. Moreover, a strong correlation between anti-KIR4.183-120 and anti-full-length-protein auto-antibodies titer was reported. However, this finding received limited confirmation. OBJECTIVE Validation of the diagnostic potential of anti-KIR4.183-120 antibodies in 78 MS patients, 64 healthy blood donors, and 42 individuals with other neurological diseases. METHODS Analysis of anti-KIR4.183-120 antibodies by enzyme-linked immunosorbent assay (ELISA) using a mouse antiserum we produced as a new ELISA reliability control. Additionally, evaluation of reactivity against 293-T cells transiently transfected with full-length KIR4.1 by flow cytometry. RESULTS We found antibodies to KIR4.183-120 only in 13 out of 78 (16.6%) MS patients; among these, only 2 were positive for anti-full-length KIR4.1 antibodies. CONCLUSION Employing a new reliability control and a new cytofluorometric assay, we cannot support anti-KIR4.183-120 auto-antibodies as a reliable biomarker in MS.
Collapse
Affiliation(s)
- Mariapaola Marino
- Institute of General Pathology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Frisullo
- Institute of Neurology, Department of Geriatrics, Neurosciences and Orthopedics, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Di Sante
- Institute of General Pathology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniela Maria Samengo
- Institute of General Pathology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlo Provenzano
- Institute of General Pathology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Mirabella
- Institute of Neurology, Department of Geriatrics, Neurosciences and Orthopedics, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovambattista Pani
- Institute of General Pathology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Ria
- Institute of General Pathology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy/Department of Laboratory Medicine, School of Medicine, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Emanuela Bartoccioni
- Institute of General Pathology, School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy/Department of Laboratory Medicine, School of Medicine, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| |
Collapse
|
11
|
Navas-Madroñal M, Valero-Mut A, Martínez-Zapata MJ, Simón-Talero MJ, Figueroa S, Vidal-Fernández N, López-Góngora M, Escartín A, Querol L. Absence of antibodies against KIR4.1 in multiple sclerosis: A three-technique approach and systematic review. PLoS One 2017; 12:e0175538. [PMID: 28414733 PMCID: PMC5393569 DOI: 10.1371/journal.pone.0175538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/27/2017] [Indexed: 11/19/2022] Open
Abstract
Introduction Antibodies targeting the inward-rectifying potassium channel KIR4.1 have been associated with multiple sclerosis (MS) but studies using diverse techniques have failed to replicate this association. The detection of these antibodies is challenging; KIR4.1 glycosylation patterns and the use of diverse technical approaches may account for the disparity of results. We aimed to replicate the association using three different approaches to overcome the technical limitations of a single technique. We also performed a systematic review to examine the association of anti-KIR4.1 antibodies with MS. Methods Serum samples from patients with MS (n = 108) and controls (n = 77) were tested for the presence of anti-KIR4.1 antibodies using three methods: 1) by ELISA with the low-glycosylated fraction of recombinant KIR4.1 purified from transfected HEK293 cells according to original protocols; 2) by immunocytochemistry using KIR4.1-transfected HEK293 cells; and 3) by immunocytochemistry using the KIR4.1.-transfected MO3.13 oligodendrocyte cell line. We developed a systematic review and meta-analysis of the association of anti-KIR4.1 antibodies with MS according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results We did not detect anti-KIR4.1 antibodies in the MS patients or in controls using ELISA. Neither did we detect any significant reactivity against the antigen on the cell surface using the KIR4.1-transfected HEK293 cells or the KIR4.1-transfected MO3.13 cells. We included 13 prospective controlled studies in the systematic review. Only three studies showed a positive association between anti-KIR4.1 and MS. Clinical and statistical heterogeneity between studies precluded meta-analysis of their results. Conclusion We found no association between anti-KIR4.1 antibody positivity and MS. Although this lack of replication may be due to technical limitations, evidence from our study and others is mounting against the role of KIR4.1 as a relevant MS autoantigen.
Collapse
Affiliation(s)
- Miquel Navas-Madroñal
- Multiple Sclerosis Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Valero-Mut
- Multiple Sclerosis Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María José Martínez-Zapata
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiologia y Salud pública (CIBERESP), Barcelona, Spain
| | - Manuel Javier Simón-Talero
- Multiple Sclerosis Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sebastián Figueroa
- Multiple Sclerosis Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria Vidal-Fernández
- Multiple Sclerosis Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mariana López-Góngora
- Multiple Sclerosis Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Escartín
- Multiple Sclerosis Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Querol
- Multiple Sclerosis Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
12
|
Marnetto F, Valentino P, Caldano M, Bertolotto A. Detection of potassium channel KIR4.1 antibodies in Multiple Sclerosis patients. J Immunol Methods 2017; 445:53-58. [PMID: 28300540 DOI: 10.1016/j.jim.2017.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/10/2017] [Indexed: 10/20/2022]
Abstract
The presence of KIR4.1 antibodies has been proposed to be a characteristic of Multiple Sclerosis (MS). This could have a significant impact on disease management. However, the validation of the initial findings has failed till date. Conflicting results have been attributed to difficulties in isolating the lower-glycosylated (LG) KIR4.1 expressed in oligodendrocytes, the putative target antigen of autoantibodies. The aim of this study is to verify the presence of KIR4.1 antibodies in MS patients, by independently replicating the originally-described procedure. Assay procedure consisted of KIR4.1 expression in HEK293 cells, 3-step elution to isolate LG-KIR4.1 in elution fraction 3, and ELISA. Sera of 48 MS patients and 46 HCs were studied in 21 working sessions. In a preliminary analysis, we observed different KIR4.1 antibody levels between MS patients and Healthy Controls (HCs). However, a high variability across working sessions was observed and the sensitivity of the assay was very low. Thus, stringent criteria were established in order to identify working sessions in which the pure LG-KIR4.1 was isolated. As per these criteria, we detected LG-KIR4.1 antibodies in 28% of MS patients and 5% of HCs. Unlike previous findings, this study is in agreement with the original report. We propose further efforts be made towards the development of a uniform method to establish the detection of KIR4.1 antibodies in MS patients.
Collapse
Affiliation(s)
- Fabiana Marnetto
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Turin, Italy; Neurologia 2-CRESM, AOU San Luigi Gonzaga, Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, Turin, Italy.
| | - Paola Valentino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Turin, Italy; Neurologia 2-CRESM, AOU San Luigi Gonzaga, Orbassano, Turin, Italy.
| | - Marzia Caldano
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Turin, Italy; Neurologia 2-CRESM, AOU San Luigi Gonzaga, Orbassano, Turin, Italy.
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Turin, Italy; Neurologia 2-CRESM, AOU San Luigi Gonzaga, Orbassano, Turin, Italy.
| |
Collapse
|
13
|
Gu C. KIR4.1: K + Channel Illusion or Reality in the Autoimmune Pathogenesis of Multiple Sclerosis. Front Mol Neurosci 2016; 9:90. [PMID: 27729847 PMCID: PMC5037192 DOI: 10.3389/fnmol.2016.00090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/12/2016] [Indexed: 01/12/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Many believe autoimmune pathogenesis plays a key role in MS, but its target(s) remains elusive. A recent study detected autoantibodies against KIR4.1, an ATP-sensitive, inward rectifier potassium channel, in nearly half of the MS patients examined. KIR4.1 channels are expressed in astrocytes. Together with aquaporin 4 (AQP4) water channels, they regulate astrocytic functions vital for myelination. Autoantibodies against AQP4 have been established as a key biomarker for neuromyelitis optica (NMO) and contributed to diagnostic and treatment strategy adjustments. Similarly, identification of KIR4.1 autoantibodies could have high therapeutic values in treating MS. Consistent with its potential role in MS, KIR4.1 dysfunction is implicated in several neurological disorders. However, the enrichment of KIR4.1 autoantibodies in MS patients is questioned by follow-up studies. Further, investigations are needed to clarify this controversy and unravel the underlying mechanisms of MS pathogenesis.
Collapse
Affiliation(s)
- Chen Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University Columbus, OH, USA
| |
Collapse
|
14
|
Pröbstel AK, Kuhle J, Lecourt AC, Vock I, Sanderson NSR, Kappos L, Derfuss T. Multiple Sclerosis and Antibodies against KIR4.1. N Engl J Med 2016; 374:1496-8. [PMID: 27074084 DOI: 10.1056/nejmc1507131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - Jens Kuhle
- University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|