1
|
Sellars E, Savguira M, Wu J, Cancelliere S, Jen M, Krishnan R, Hakem A, Barsyte-Lovejoy D, Hakem R, Narod SA, Kotsopoulos J, Salmena L. A high-throughput approach to identify BRCA1-downregulating compounds to enhance PARP inhibitor sensitivity. iScience 2024; 27:110180. [PMID: 38993666 PMCID: PMC11238136 DOI: 10.1016/j.isci.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/29/2024] [Accepted: 06/01/2024] [Indexed: 07/13/2024] Open
Abstract
PARP inhibitors (PARPi) are efficacious in BRCA1-null tumors; however, their utility is limited in tumors with functional BRCA1. We hypothesized that pharmacologically reducing BRCA1 protein levels could enhance PARPi effectiveness in BRCA1 wild-type tumors. To identify BRCA1 downregulating agents, we generated reporter cell lines using CRISPR-mediated editing to tag endogenous BRCA1 protein with HiBiT. These reporter lines enable the sensitive measurement of BRCA1 protein levels by luminescence. Validated reporter cells were used in a pilot screen of epigenetic-modifying probes and a larger screen of more than 6,000 compounds. We identified 7 compounds that could downregulate BRCA1-HiBiT expression and synergize with olaparib. Three compounds, N-acetyl-N-acetoxy chlorobenzenesulfonamide (NANAC), A-443654, and CHIR-124, were validated to reduce BRCA1 protein levels and sensitize breast cancer cells to the toxic effects of olaparib. These results suggest that BRCA1-HiBiT reporter cells hold promise in developing agents to improve the clinical utility of PARPi.
Collapse
Affiliation(s)
- Erin Sellars
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
| | - Margarita Savguira
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jie Wu
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sabrina Cancelliere
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mark Jen
- Lunenfeld-Tanenbaum Research Institute, Network Biology Collaborative Centre, High-Throughput Screening, Mt. Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Anne Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Joanne Kotsopoulos
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Leonardo Salmena
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, ON M5S 1B2, Canada
| |
Collapse
|
5
|
Tsui DWY, Cheng ML, Shady M, Yang JL, Stephens D, Won H, Srinivasan P, Huberman K, Meng F, Jing X, Patel J, Hasan M, Johnson I, Gedvilaite E, Houck-Loomis B, Socci ND, Selcuklu SD, Seshan VE, Zhang H, Chakravarty D, Zehir A, Benayed R, Arcila M, Ladanyi M, Funt SA, Feldman DR, Li BT, Razavi P, Rosenberg J, Bajorin D, Iyer G, Abida W, Scher HI, Rathkopf D, Viale A, Berger MF, Solit DB. Tumor fraction-guided cell-free DNA profiling in metastatic solid tumor patients. Genome Med 2021; 13:96. [PMID: 34059130 PMCID: PMC8165771 DOI: 10.1186/s13073-021-00898-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cell-free DNA (cfDNA) profiling is increasingly used to guide cancer care, yet mutations are not always identified. The ability to detect somatic mutations in plasma depends on both assay sensitivity and the fraction of circulating DNA in plasma that is tumor-derived (i.e., cfDNA tumor fraction). We hypothesized that cfDNA tumor fraction could inform the interpretation of negative cfDNA results and guide the choice of subsequent assays of greater genomic breadth or depth. METHODS Plasma samples collected from 118 metastatic cancer patients were analyzed with cf-IMPACT, a modified version of the FDA-authorized MSK-IMPACT tumor test that can detect genomic alterations in 410 cancer-associated genes. Shallow whole genome sequencing (sWGS) was also performed in the same samples to estimate cfDNA tumor fraction based on genome-wide copy number alterations using z-score statistics. Plasma samples with no somatic alterations detected by cf-IMPACT were triaged based on sWGS-estimated tumor fraction for analysis with either a less comprehensive but more sensitive assay (MSK-ACCESS) or broader whole exome sequencing (WES). RESULTS cfDNA profiling using cf-IMPACT identified somatic mutations in 55/76 (72%) patients for whom MSK-IMPACT tumor profiling data were available. A significantly higher concordance of mutational profiles and tumor mutational burden (TMB) was observed between plasma and tumor profiling for plasma samples with a high tumor fraction (z-score≥5). In the 42 patients from whom tumor data was not available, cf-IMPACT identified mutations in 16/42 (38%). In total, cf-IMPACT analysis of plasma revealed mutations in 71/118 (60%) patients, with clinically actionable alterations identified in 30 (25%), including therapeutic targets of FDA-approved drugs. Of the 47 samples without alterations detected and low tumor fraction (z-score<5), 29 had sufficient material to be re-analyzed using a less comprehensive but more sensitive assay, MSK-ACCESS, which revealed somatic mutations in 14/29 (48%). Conversely, 5 patients without alterations detected by cf-IMPACT and with high tumor fraction (z-score≥5) were analyzed by WES, which identified mutational signatures and alterations in potential oncogenic drivers not covered by the cf-IMPACT panel. Overall, we identified mutations in 90/118 (76%) patients in the entire cohort using the three complementary plasma profiling approaches. CONCLUSIONS cfDNA tumor fraction can inform the interpretation of negative cfDNA results and guide the selection of subsequent sequencing platforms that are most likely to identify clinically-relevant genomic alterations.
Collapse
Affiliation(s)
- Dana W Y Tsui
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Weill Cornell Medical College, Weill Cornell University, New York, USA.
- Present Address: PetDx, Inc., La Jolla, USA.
| | - Michael L Cheng
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
- Present Address: Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Maha Shady
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Present Address: Graduate School of Arts and Sciences, Harvard University, Cambridge, USA
| | - Julie L Yang
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Dennis Stephens
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Helen Won
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Preethi Srinivasan
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Kety Huberman
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Fanli Meng
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Xiaohong Jing
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Present Address: NYU Langone Health, New York, USA
| | - Juber Patel
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Maysun Hasan
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Ian Johnson
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Erika Gedvilaite
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Brian Houck-Loomis
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Nicholas D Socci
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - S Duygu Selcuklu
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Venkatraman E Seshan
- Department of Epidemiology-Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Hongxin Zhang
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Debyani Chakravarty
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Ahmet Zehir
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Maria Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Samuel A Funt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Darren R Feldman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Bob T Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Jonathan Rosenberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Dean Bajorin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Gopa Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Howard I Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Dana Rathkopf
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Agnes Viale
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Michael F Berger
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Weill Cornell Medical College, Weill Cornell University, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - David B Solit
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|
6
|
Qin J, Cheng W, Duan YT, Yang H, Yao Y. Indazole as a Privileged Scaffold: The Derivatives and their Therapeutic Applications. Anticancer Agents Med Chem 2021; 21:839-860. [PMID: 32819234 DOI: 10.2174/1871520620999200818160350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Heterocyclic compounds, also called heterocycles, are a major class of organic chemical compound that plays a vital role in the metabolism of all living cells. The heterocyclic compound, indazole, has attracted more attention in recent years and is widely present in numerous commercially available drugs. Indazole-containing derivatives, representing one of the most important heterocycles in drug molecules, are endowed with a broad range of biological properties. METHODS A literature search was conducted in PubMed, Google Scholar and Web of Science regarding articles related to indazole and its therapeutic application. RESULTS The mechanism and structure-activity relationship of indazole and its derivatives were described. Based on their versatile biological activities, the compounds were divided into six groups: anti-inflammatory, antibacterial, anti-HIV, antiarrhythmic, antifungal and antitumour. At least 43 indazole-based therapeutic agents were found to be used in clinical application or clinical trials. CONCLUSION This review is a guide for pharmacologists who are in search of valid preclinical/clinical drug compounds where the progress of approved marketed drugs containing indazole scaffold is examined from 1966 to the present day. Future direction involves more diverse bioactive moieties with indazole scaffold and greater insights into its mechanism.
Collapse
Affiliation(s)
- Jinling Qin
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Weyland Cheng
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affilited to Zhengzhou University, Zhengzhou University, Henan 450018, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affilited to Zhengzhou University, Zhengzhou University, Henan 450018, China
| | - Hua Yang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affilited to Zhengzhou University, Zhengzhou University, Henan 450018, China
| |
Collapse
|