1
|
Safrhansova L, Hlozkova K, Starkova J. Targeting amino acid metabolism in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:37-79. [PMID: 36283767 DOI: 10.1016/bs.ircmb.2022.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metabolic rewiring is a characteristic hallmark of cancer cells. This phenomenon sustains uncontrolled proliferation and resistance to apoptosis by increasing nutrients and energy supply. However, reprogramming comes together with vulnerabilities that can be used against tumor and can be applied in targeted therapy. In the last years, the genetic background of tumors has been identified thoroughly and new therapies targeting those mutations tested. Nevertheless, we propose that targeting the phenotype of cancer cells could be another way of treatment aiming to avoid drug resistance and non-responsiveness of cancer patients. Amino acid metabolism is part of the altered processes in cancer cells. Amino acids are building blocks and also sensors of signaling pathways regulating main biological processes. In this comprehensive review, we described four amino acids (asparagine, arginine, methionine, and cysteine) which have been actively investigated as potential targets for anti-tumor therapy. Asparagine depletion is successfully used for decades in the treatment of acute lymphoblastic leukemia and there is a strong implication to apply it to other types of tumors. Arginine auxotrophic tumors are great candidates for arginine-starvation therapy. Higher requirement for essential amino acids such as methionine and cysteine point out promising targetable weaknesses of cancer cells.
Collapse
Affiliation(s)
- Lucie Safrhansova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Hlozkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Julia Starkova
- CLIP - Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Dept. of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
2
|
Distinct EphB4-mediated mechanisms of apoptotic and resistance to dasatinib in human chronic myeloid leukemia and K562 cell lines. Leuk Res 2017; 63:28-33. [PMID: 29096333 DOI: 10.1016/j.leukres.2017.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/26/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To determine the role and mechanism of EphB4 in dasatinib (DAS) resistance in advanced chronic myeloid leukemia (CML), we explored the EphB4-mediated apoptotic and matrix microenvironment pathway in human CML and K562 cell lines. METHOD Heparinized bone marrow samples were obtained from enrolled five patients (identified as A to E and visits identified by number) at initial diagnosis (A1-E1) and in the DAS-resistance advanced phase (A2-E2). Meanwhile, highly DAS-resistant cells, named K562-R cells, were obtained from K562-W cells with increasing concentrations of DAS. Stable under-expressing EphB4 cells (K562-R-EphB4-sh) were obtained from K562-R cells by RNA interference. K562-W, K562-R and K562-R-EphB4-sh cells (108) were respectively injected subcutaneously on the dorsal surface of BALB/C female nude mice to establish the xenografts models. RESULT The mRNA/protein of EphB4 was overexpressed in the DAS-resistant A2-E2 in comparison with the A1-E1 human cell lines. Further, compared with K562-R cells, the expressions of EphB4 and p-Rac1/Cdc42 protein/mRNA were significantly downregulated in K562-R-EphB4-sh cells (P<0.01). K562-R cells showed the highest DAS resistance (IC50 10.54±0.67μg/ml), but K562-R-EphB4-sh cells became sensitive to DAS (IC50 1.02±0.1μg/ml, P<0.01). The expression of EphB4/p-RhoA/MCL-1 protein was gradually increased in the stimulating of EphrinB2-Fc, which partly made K562-R-EphB4-sh cells restore sensitivity to DAS (4.18±0.30μg/ml). Meanwhile, the K562-R-EphB4-sh xenografts group had relatively good efficacy compared to K562-R xenografts nude mice receiving the same dose of DAS. The analysis of xenografts tissue also suggested parallel results with the overexpression of EphB4/RhoA/ROCK1/PTEN/MCL-1 in K562-R xenografts, which decreased in the A2-R-EphB4-sh xenografts (P<0.01). CONCLUSIONS The present study found that a new DAS resistance pathway of EphB4 overexpression was triggered by EphrinB2-Fc, which induced the resistance to DAS by activating RhoA/ROCK1/PTEN/MCL-1 signaling.
Collapse
|
3
|
Bertuccio SN, Serravalle S, Astolfi A, Lonetti A, Indio V, Leszl A, Pession A, Melchionda F. Identification of a cytogenetic and molecular subgroup of acute myeloid leukemias showing sensitivity to L-Asparaginase. Oncotarget 2017; 8:109915-109923. [PMID: 29299118 PMCID: PMC5746353 DOI: 10.18632/oncotarget.18565] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/02/2017] [Indexed: 01/11/2023] Open
Abstract
L-Asparaginase (L-Asp) is an enzyme that catalyzes the hydrolysis of L-asparagine to L-aspartic acid, and its depletion induces leukemic cell death. L-Asp is an important component of treatment regimens for Acute Lymphoblastic Leukemia (ALL). Sensitivity to L-Asp is due to the absence of L-Asparagine synthetase (ASNS), the enzyme that catalyzes the biosynthesis of L-asparagine. ASNS gene is located on 7q21.3, and its increased expression in ALLs correlates with L-Asp resistance. Chromosome 7 monosomy (-7) is a recurrent aberration in myeloid disorders, particularly in adverse-risk Acute Myeloid Leukemias (AMLs) and therapy-related myeloid neoplasms (t-MN), that leads to a significant downregulation of the deleted genes, including ASNS. Therefore, we hypothesized that -7 could affect L-Asp sensitivity in AMLs. By treating AML cell lines and primary cells from pediatric patients with L-Asp, we showed that -7 cells were more sensitive than AML cells without -7. Importantly, both ASNS gene and protein expression were significantly lower in -7 AML cell lines, suggesting that haploinsufficiency of ASNS might induce sensitivity to L-Asp in AMLs. To prove the role of ASNS haploinsufficiency in sensitizing AML cells to L-Asp treatment, we performed siRNA-knockdown of ASNS in AML cell lines lacking -7, and observed that ASNS knockdown significantly increased L-Asp cytotoxicity. In conclusion, -7 AMLs showed high sensitivity to L-Asp treatment due to low expression of ASNS. Thus, L-Asp may be considered for treatment of AML pediatric patients carrying -7, in order to improve the outcome of adverse-risk AMLs and t-MN patients.
Collapse
Affiliation(s)
- Salvatore Nicola Bertuccio
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Salvatore Serravalle
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.,"Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Annalisa Lonetti
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Valentina Indio
- "Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Anna Leszl
- Department of Woman and Child Health, Laboratory of Hematology-Oncology, University of Padova, Padova, Italy
| | - Andrea Pession
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.,"Giorgio Prodi" Cancer Research Center, University of Bologna, Bologna, Italy
| | - Fraia Melchionda
- Pediatric Hematology and Oncology Unit, Department of Pediatrics, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Thomas X, Le Jeune C. Erythrocyte encapsulated l-asparaginase (GRASPA) in acute leukemia. Int J Hematol Oncol 2016; 5:11-25. [PMID: 30302200 PMCID: PMC6172001 DOI: 10.2217/ijh-2016-0002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/19/2016] [Indexed: 11/21/2022] Open
Abstract
l-asparaginase, an enzyme originally derived from Escherichia coli, represents a major drug in the treatment of acute lymphoblastic leukemia. However, the occurrence of major adverse effects often leads to early withdrawal of the enzyme. Main side effects include immune-allergic reactions, coagulopathy, pancreatitis and hepatic disorders. Novel asparaginase formulations and alternative sources have been developed to address this issue, but the results were not totally satisfactory. l-asparaginase loaded red blood cells (RBCs; GRASPA) represent a new asparaginase presentation with reduced immunological adverse reactions. RBCs protect l-asparaginase, enhance its half-life and reduce the occurrence of adverse events. We reviewed the history, biology and clinical experiences with l-asparaginase, and the characteristics and first clinical experiences with GRASPA in the treatment of acute leukemia.
Collapse
Affiliation(s)
- Xavier Thomas
- Hospices Civils de Lyon, Hematology Department, Lyon-Sud Hospital, Bât.1G, 165 chemin du Grand Revoyet, 69495 Pierre-Bénite, France
| | - Caroline Le Jeune
- Hospices Civils de Lyon, Hematology Department, Lyon-Sud Hospital, Bât.1G, 165 chemin du Grand Revoyet, 69495 Pierre-Bénite, France
| |
Collapse
|
5
|
Shrivastava A, Khan AA, Khurshid M, Kalam MA, Jain SK, Singhal PK. Recent developments in l-asparaginase discovery and its potential as anticancer agent. Crit Rev Oncol Hematol 2016; 100:1-10. [DOI: 10.1016/j.critrevonc.2015.01.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/17/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022] Open
|
6
|
Borek D, Kozak M, Pei J, Jaskolski M. Crystal structure of active site mutant of antileukemicl-asparaginase reveals conserved zinc-binding site. FEBS J 2014; 281:4097-111. [DOI: 10.1111/febs.12906] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/16/2014] [Accepted: 07/01/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Dominika Borek
- Department of Crystallography; Faculty of Chemistry; A. Mickiewicz University; Poznan Poland
| | - Maciej Kozak
- Department of Crystallography; Faculty of Chemistry; A. Mickiewicz University; Poznan Poland
- Department of Macromolecular Physics; Faculty of Physics; A. Mickiewicz University; Poznan Poland
| | - Jimin Pei
- Howard Hughes Medical Institute; University of Texas Southwestern Medical Center; Dallas TX USA
| | - Mariusz Jaskolski
- Department of Crystallography; Faculty of Chemistry; A. Mickiewicz University; Poznan Poland
- Center for Biocrystallographic Research; Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznan Poland
| |
Collapse
|
7
|
Kusano-Arai O, Iwanari H, Mochizuki Y, Nakata H, Kodama T, Kitoh T, Hamakubo T. Evaluation of the asparagine synthetase level in leukemia cells by monoclonal antibodies. Hybridoma (Larchmt) 2013; 31:325-32. [PMID: 23098298 DOI: 10.1089/hyb.2012.0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
L-Asparaginase (ASNase) is important for the treatment of childhood acute lymphoblastic leukemia. ASNase sensitivity has been shown to correlate with the asparagine synthetase (ASNS) protein content in acute lymphoblastic leukemia cell lines. However, there have been few studies to determine ASNS protein levels in human leukemias, since no appropriate monoclonal antibody is available for such quantitative analysis. In this study, we report the generation of anti-ASNS monoclonal antibodies, which are applicable to flow cytometry and enzyme-linked immunosorbent assay. These monoclonal antibodies should provide a valuable tool for the quantification of ASNS protein level and estimation of ASNase-resistance in leukemia cells.
Collapse
Affiliation(s)
- Osamu Kusano-Arai
- Department of Molecular Biology and Medicine, The University of Tokyo, Meguro, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Lv J, Xiao Q, Wang L, Liu X, Wang X, Yang Z, Zhang H, Dong P. Fucoidan prevents multiple myeloma cell escape from chemotherapy-induced drug cytotoxicity. Fitoterapia 2012; 84:257-63. [PMID: 23266733 DOI: 10.1016/j.fitote.2012.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/13/2012] [Accepted: 12/13/2012] [Indexed: 11/28/2022]
Abstract
Minimal residual disease (MRD) occurrence with some chemotherapy drugs that promote tumor cell escape is also a key factor in blood malignancy relapse. We observed that cytarabine promotes multiple myeloma (MM) cell escape and that the number of cells in the lower chamber increased with increasing clinical disease stage in in vitro model which was constructed by a Boyden chamber, matrigel glue and serum from MM patients in different disease stages. The mechanism of cytarabine that promotes MM cell escape is closely associated with the up-regulation of CXCR4. SDF-1α can up-regulate the expression of MMP9 and RHoC proteins in MM cells with up-regulated CXCR4, and further promote the cell escape. Fucoidan, a sulfated polysaccharide in the cell wall matrix of brown algae, has attracted much attention for its multiple biological activities, and we further explored the effects and possible underlying mechanisms of fucoidan on MM cell escape from cytarabine cytotoxicity. The results show that fucoidan may decrease MM cell escape from cytarabine cytotoxicity, and that fucoidan can down-regulate CXCR4, MMP9 and RHoC expression. This research provides new direction for investigating MRD occurrence and prevention.
Collapse
Affiliation(s)
- Jinglong Lv
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang W, Huang P. Cancer-stromal interactions: role in cell survival, metabolism and drug sensitivity. Cancer Biol Ther 2011; 11:150-6. [PMID: 21191189 DOI: 10.4161/cbt.11.2.14623] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has been known for a long time that the interaction between cancer cells and tissue microenvironment plays a major role in cancer development, progression and metastasis. The biochemical aspect of cancer-stromal interactions, however, is less appreciated. This short review article first provides a brief summary of the communications between cancer cells and the tissue microenvironment by direct cell-cell interactions and by soluble factors, and then describes several biochemical pathways that are important for the interaction between stromal and cancer cells with respect to energy metabolism, redox balance, cell survival and drug resistance. The potential therapeutic implications of abolishing stromal protective mechanisms to overcome drug resistance are also discussed.
Collapse
Affiliation(s)
- Wan Zhang
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
10
|
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are being clinically explored as a new therapeutic for treating a variety of immune-mediated diseases. First heralded as a regenerative therapy for skeletal tissue repair, MSCs have recently been shown to modulate endogenous tissue and immune cells. Preclinical studies of the mechanism of action suggest that the therapeutic effects afforded by MSC transplantation are short-lived and related to dynamic, paracrine interactions between MSCs and host cells. Therefore, representations of MSCs as drug-loaded particles may allow for pharmacokinetic models to predict the therapeutic activity of MSC transplants as a function of drug delivery mode. By integrating principles of MSC biology, therapy, and engineering, the field is armed to usher in the next generation of stem cell therapeutics.
Collapse
Affiliation(s)
- Biju Parekkadan
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
11
|
Ameri K, Luong R, Zhang H, Powell AA, Montgomery KD, Espinosa I, Bouley DM, Harris AL, Jeffrey SS. Circulating tumour cells demonstrate an altered response to hypoxia and an aggressive phenotype. Br J Cancer 2010; 102:561-9. [PMID: 20051957 PMCID: PMC2805847 DOI: 10.1038/sj.bjc.6605491] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Tumours contain hypoxic regions that select for an aggressive cell phenotype; tumour hypoxia induces metastasis-associated genes. Treatment refractory patients with metastatic cancer show increased numbers of circulating tumour cells (CTCs), which are also associated with disease progression. The aim of this study was to examine the as yet unknown relationship between hypoxia and CTCs. Methods: We generated human MDA-MB-231 orthotopic xenografts and, using a new technology, isolated viable human CTCs from murine blood. The CTCs and parental MDA-MB-231 cells were incubated at 21 and 0.2% (hypoxia) oxygen, respectively. Colony formation was assayed and levels of hypoxia- and anoxia-inducible factors were measured. Xenografts generated from CTCs and parental cells were compared. Results: MDA-MB-231 xenografts used to generate CTCs were hypoxic, expressing hypoxia factors: hypoxia-inducible factor1 alpha (HIF1α) and glucose transporter protein type 1 (GLUT1), and anoxia-induced factors: activating transcription factor 3 and 4 (ATF3 and ATF4). Parental MDA-MB-231 cells induced ATF3 in hypoxia, whereas CTCs expressed it constitutively. Asparagine synthetase (ASNS) expression was also higher in CTCs. Hypoxia induced ATF4 and the HIF1α target gene apelin in CTCs, but not in parental cells. Hypoxia induced lower levels of carbonic anhydrase IX (CAIX), GLUT1 and BCL2/adenovirus E1B 19-KD protein-interacting protein 3 (BNIP3) proteins in CTCs than in parental cells, supporting an altered hypoxia response. In chronic hypoxia, CTCs demonstrated greater colony formation than parental cells. Xenografts generated from CTCs were larger and heavier, and metastasised faster than MDA-MB-231 xenografts. Conclusion: CTCs show an altered hypoxia response and an enhanced aggressive phenotype in vitro and in vivo.
Collapse
Affiliation(s)
- K Ameri
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5494, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The use of unmodified asparaginases (ASP) in the management of pediatric and adult acute lymphoblastic leukemia (ALL) is well established. Despite its well-proven clinical efficacy, the use of unmodified Escherichia coli ASP (EC-ASP) has been limited by frequent toxicities, especially the development of hypersensitivity reactions and neutralizing antibodies, and by the need for frequent administration. To overcome these limitations, EC-ASP enzyme was covalently linked to monomethoxypolyethylene glycol (PEG), forming the pegylated ASP (PEG-ASP) (Oncaspar). PEG-ASP has a prolonged half-life and is associated with decreased immunogenicity when compared with EC-ASP. Clinical trials have demonstrated the efficacy, safety and tolerability of PEG-ASP administered intramuscularly, subcutaneously or intravenously as part of multi-agent chemotherapy regimens in the management of newly diagnosed and relapsed pediatric and adult ALL. Here we discuss the pharmacology, pharmacokinetics, clinical trial results and potential side effects of PEG-ASP.
Collapse
Affiliation(s)
- Amer Zeidan
- Roswell Park Cancer Institute, Department of Medicine, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
13
|
Abstract
Hematopoietic and epithelial cancer cells express CXCR4, a seven-transmembrane G-protein-coupled chemokine receptor. Stromal cells within the bone marrow microenvironment constitutively secrete stromal cell-derived factor-1 (SDF-1/CXCL12), the ligand for CXCR4. Activation of CXCR4 induces leukemia cell trafficking and homing to the marrow microenvironment, where CXCL12 retains leukemia cells in close contact with marrow stromal cells that provide growth and drug resistance signals. CXCR4 antagonists, such as Plerixafor (AMD3100) and T140 analogs, can disrupt adhesive tumor-stroma interactions and mobilize leukemia cells from their protective stromal microenvironment, making them more accessible to conventional drugs. Therefore, targeting the CXCR4-CXCL12 axis is a novel, attractive therapeutic approach that is explored in ongoing clinical trials in leukemia patients. Initially, CXCR4 antagonists were developed for the treatment of HIV, where CXCR4 functions as a co-receptor for virus entry into T cells. Subsequently, CXCR4 antagonists were noticed to induce leukocytosis, and are currently used clinically for mobilization of hematopoietic stem cells. However, because CXCR4 plays a key role in cross-talk between leukemia cells (and a variety of other tumor cells) and their microenvironment, cancer treatment may become the ultimate application of CXCR4 antagonists. Here, we summarize the development of CXCR4 antagonists and their preclinical and clinical activities, focusing on leukemia and other cancers.
Collapse
|