1
|
Yu Q, Liu S, Guo R, Chen K, Li Y, Jiang D, Gong S, Yin L, Liu K. Complete Restoration of Hearing Loss and Cochlear Synaptopathy via Minimally Invasive, Single-Dose, and Controllable Middle Ear Delivery of Brain-Derived Neurotrophic Factor-Poly(dl-lactic acid- co-glycolic acid)-Loaded Hydrogel. ACS NANO 2024; 18:6298-6313. [PMID: 38345574 DOI: 10.1021/acsnano.3c11049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Noise-induced hearing loss (NIHL) often accompanies cochlear synaptopathy, which can be potentially reversed to restore hearing. However, there has been little success in achieving complete recovery of sensorineural deafness using nearly noninvasive middle ear drug delivery before. Here, we present a study demonstrating the efficacy of a middle ear delivery system employing brain-derived neurotrophic factor (BDNF)-poly-(dl-lactic acid-co-glycolic acid) (PLGA)-loaded hydrogel in reversing synaptopathy and restoring hearing function in a mouse model with NIHL. The mouse model achieved using the single noise exposure (NE, 115 dBL, 4 h) exhibited an average 20 dBL elevation of hearing thresholds with intact cochlear hair cells but a loss of ribbon synapses as the primary cause of hearing impairment. We developed a BDNF-PLGA-loaded thermosensitive hydrogel, which was administered via a single controllable injection into the tympanic cavity of noise-exposed mice, allowing its presence in the middle ear for a duration of 2 weeks. This intervention resulted in complete restoration of NIHL at frequencies of click, 4, 8, 16, and 32 kHz. Moreover, the cochlear ribbon synapses exhibited significant recovery, whereas other cochlear components (hair cells and auditory nerves) remained unchanged. Additionally, the cochlea of NE treated mice revealed activation of tropomyosin receptor kinase B (TRKB) signaling upon exposure to BDNF. These findings demonstrate a controllable and minimally invasive therapeutic approach that utilizes a BDNF-PLGA-loaded hydrogel to restore NIHL by specifically repairing cochlear synaptopathy. This tailored middle ear delivery system holds great promise for achieving ideal clinical outcomes in the treatment of NIHL and cochlear synaptopathy.
Collapse
Affiliation(s)
- Qianru Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shengnan Liu
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Rui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kuntao Chen
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Yang Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Dan Jiang
- Hearing Implant Centre, Guy's and St. Thomas NHS Foundation Trust, London SE1 7EH, United Kingdom
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, United Kingdom
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China
| | - Lan Yin
- School of Materials Science and Engineering,Tsinghua University, Beijing 100084, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing 100050, China
| |
Collapse
|
2
|
Min X, Deng XH, Lao H, Wu ZC, Chen Y, Luo Y, Wu H, Wang J, Fu QL, Xiong H. BDNF-enriched small extracellular vesicles protect against noise-induced hearing loss in mice. J Control Release 2023; 364:546-561. [PMID: 37939851 DOI: 10.1016/j.jconrel.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Noise-induced hearing loss (NIHL) is one of the most prevalent acquired sensorineural hearing loss etiologies and is characterized by the loss of cochlear hair cells, synapses, and nerve terminals. Currently, there are no agents available for the treatment of NIHL because drug delivery to the inner ear is greatly limited by the blood-labyrinth barrier. In this study, we used mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) as nanoscale vehicles to deliver brain-derived neurotrophic factor (BDNF) and evaluated their protective effects in a mouse model of NIHL. Following intravenous administration, BDNF-loaded sEVs (BDNF-sEVs) efficiently increased the expression of BDNF protein in the cochlea. Systemic application of sEVs and BDNF-sEVs significantly attenuated noise-induced cochlear hair cell loss and NIHL in CBA/J mice. BDNF-sEVs also alleviated noise-induced loss of inner hair cell ribbon synapses and cochlear nerve terminals. In cochlear explants, sEVs and BDNF-sEVs effectively protected hair cells against H2O2-induced cell loss. Additionally, BDNF-sEVs remarkably ameliorated H2O2-induced oxidative stress, cell apoptosis, and cochlear nerve terminal degeneration. Transcriptomic analysis revealed that many mRNAs and miRNAs were involved in the protective actions of BDNF-sEVs against oxidative stress. Collectively, our findings reveal a novel therapeutic strategy of MSC-sEVs-mediated BDNF delivery for the treatment of NIHL.
Collapse
Affiliation(s)
- Xin Min
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Xiao-Hui Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Huilin Lao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Zi-Cong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Yi Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Yuelian Luo
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Haoyang Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Junbo Wang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Qing-Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China; Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou 510120, PR China.
| |
Collapse
|
3
|
Smith-Cortinez N, Tan AK, Stokroos RJ, Versnel H, Straatman LV. Regeneration of Hair Cells from Endogenous Otic Progenitors in the Adult Mammalian Cochlea: Understanding Its Origins and Future Directions. Int J Mol Sci 2023; 24:ijms24097840. [PMID: 37175547 PMCID: PMC10177935 DOI: 10.3390/ijms24097840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Sensorineural hearing loss is caused by damage to sensory hair cells and/or spiral ganglion neurons. In non-mammalian species, hair cell regeneration after damage is observed, even in adulthood. Although the neonatal mammalian cochlea carries regenerative potential, the adult cochlea cannot regenerate lost hair cells. The survival of supporting cells with regenerative potential after cochlear trauma in adults is promising for promoting hair cell regeneration through therapeutic approaches. Targeting these cells by manipulating key signaling pathways that control mammalian cochlear development and non-mammalian hair cell regeneration could lead to regeneration of hair cells in the mammalian cochlea. This review discusses the pathways involved in the development of the cochlea and the impact that trauma has on the regenerative capacity of the endogenous progenitor cells. Furthermore, it discusses the effects of manipulating key signaling pathways targeting supporting cells with progenitor potential to promote hair cell regeneration and translates these findings to the human situation. To improve hearing recovery after hearing loss in adults, we propose a combined approach targeting (1) the endogenous progenitor cells by manipulating signaling pathways (Wnt, Notch, Shh, FGF and BMP/TGFβ signaling pathways), (2) by manipulating epigenetic control, and (3) by applying neurotrophic treatments to promote reinnervation.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - A Katherine Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Louise V Straatman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
4
|
Ren H, Hu B, Jiang G. Advancements in prevention and intervention of sensorineural hearing loss. Ther Adv Chronic Dis 2022; 13:20406223221104987. [PMID: 35782345 PMCID: PMC9243368 DOI: 10.1177/20406223221104987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
The inner ear is a complex and difficult organ to study, and sensorineural hearing loss (SNHL) is a multifactorial sensorineural disorder with characteristics of impaired speech discrimination, recognition, sound detection, and localization. Till now, SNHL is recognized as an incurable disease because the potential mechanisms underlying SNHL have not been elucidated. The risk of developing SNHL is no longer viewed as primarily due to environmental factors. Instead, SNHL seems to result from a complicated interplay of genetic and environmental factors affecting numerous fundamental cellular processes. The complexity of SNHL is presented as an inability to make an early diagnosis at the earliest stages of the disease and difficulties in the management of symptoms during the process. To date, there are no treatments that slow the neurodegenerative process. In this article, we review the recent advances about SHNL and discuss the complexities and challenges of prevention and intervention of SNHL.
Collapse
Affiliation(s)
- Hongmiao Ren
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Bing Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Guangli Jiang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Mukherjee S, Kuroiwa M, Oakden W, Paul BT, Noman A, Chen J, Lin V, Dimitrijevic A, Stanisz G, Le TN. Local magnetic delivery of adeno-associated virus AAV2(quad Y-F)-mediated BDNF gene therapy restores hearing after noise injury. Mol Ther 2022; 30:519-533. [PMID: 34298130 PMCID: PMC8821893 DOI: 10.1016/j.ymthe.2021.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/11/2021] [Accepted: 07/14/2021] [Indexed: 02/04/2023] Open
Abstract
Moderate noise exposure may cause acute loss of cochlear synapses without affecting the cochlear hair cells and hearing threshold; thus, it remains "hidden" to standard clinical tests. This cochlear synaptopathy is one of the main pathologies of noise-induced hearing loss (NIHL). There is no effective treatment for NIHL, mainly because of the lack of a proper drug-delivery technique. We hypothesized that local magnetic delivery of gene therapy into the inner ear could be beneficial for NIHL. In this study, we used superparamagnetic iron oxide nanoparticles (SPIONs) and a recombinant adeno-associated virus (AAV) vector (AAV2(quad Y-F)) to deliver brain-derived neurotrophic factor (BDNF) gene therapy into the rat inner ear via minimally invasive magnetic targeting. We found that the magnetic targeting effectively accumulates and distributes the SPION-tagged AAV2(quad Y-F)-BDNF vector into the inner ear. We also found that AAV2(quad Y-F) efficiently transfects cochlear hair cells and enhances BDNF gene expression. Enhanced BDNF gene expression substantially recovers noise-induced BDNF gene downregulation, auditory brainstem response (ABR) wave I amplitude reduction, and synapse loss. These results suggest that magnetic targeting of AAV2(quad Y-F)-mediated BDNF gene therapy could reverse cochlear synaptopathy after NIHL.
Collapse
Affiliation(s)
- Subhendu Mukherjee
- Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Maya Kuroiwa
- Department of Otolaryngology Head & Neck Surgery, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - Wendy Oakden
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Brandon T. Paul
- Evaluative Clinical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ayesha Noman
- Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Joseph Chen
- Department of Otolaryngology Head & Neck Surgery, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - Vincent Lin
- Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada,Department of Otolaryngology Head & Neck Surgery, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - Andrew Dimitrijevic
- Evaluative Clinical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada,Department of Otolaryngology Head & Neck Surgery, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada
| | - Greg Stanisz
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Trung N. Le
- Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada,Department of Otolaryngology Head & Neck Surgery, Faculty of Medicine, University of Toronto, ON M5S 1A1, Canada,Corresponding author: Trung N. Le, Biological Sciences Platform, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Room M1 102, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
6
|
Yang H, Zhu Y, Ye Y, Guan J, Min X, Xiong H. Nitric oxide protects against cochlear hair cell damage and noise-induced hearing loss through glucose metabolic reprogramming. Free Radic Biol Med 2022; 179:229-241. [PMID: 34801666 DOI: 10.1016/j.freeradbiomed.2021.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO) is critically involved in the regulation of a wide variety of physiological and pathophysiological processes. However, the role of NO in the pathogenesis of noise-induced hearing loss (NIHL) is complex and remains controversial. Here we reported that treatment of CBA/J mice with l-arginine, a physiological precursor of NO, significantly reduced noise-induced reactive oxygen species accumulation in outer hair cells (OHCs), attenuated noise-induced loss of OHCs and NIHL consequently. Conversely, pharmacological inhibition of endothelial nitric oxide synthase exacerbated noise-induced loss of OHCs and aggravated NIHL. In HEI-OC1 cells, NO also showed substantial protection against H2O2-induced oxidative stress and cytotoxicity. Mechanistically, NO increased S-nitrosylation of pyruvate kinase M2 (PKM2) and inhibited its activity, which thus diverted glucose metabolic flux from glycolysis into the pentose phosphate pathway to increase production of reducing equivalents (NADPH and GSH) and eventually prevented H2O2-induced oxidative damage. These findings open new avenues for protection of cochlear hair cells from oxidative stress and prevention of NIHL through NO modulation of PKM2 and glucose metabolism reprogramming.
Collapse
Affiliation(s)
- Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Yafeng Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongyi Ye
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiao Guan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Min
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
7
|
Liang S, Dong S, Liu W, Wang M, Tian S, Ai Y, Wang H. Accumulated ROS Activates HIF-1α-Induced Glycolysis and Exerts a Protective Effect on Sensory Hair Cells Against Noise-Induced Damage. Front Mol Biosci 2022; 8:806650. [PMID: 35096971 PMCID: PMC8790562 DOI: 10.3389/fmolb.2021.806650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Noise exposure causes noise-induced hearing loss (NIHL). NIHL exhibits loss of inner ear sensory hair cells and is often irreparable. Although oxidative stress is involved in hearing loss, the complex mechanisms involved in NIHL are unclear. Hypoxia-inducible factor 1α (HIF-1α) has been suggested to be essential for protecting sensory hair cells. Additionally, it has been shown that ROS is involved in modulating the stability of HIF-1α. To investigate the NIHL pathogenesis, we established a tert-butyl hydroperoxide (t-BHP)-induced oxidative stress damage model in hair-like HEI-OC1 cells and an NIHL model in C57BL/6 mice. Protein and mRNA expression were determined, and biochemical parameters including reactive oxygen species (ROS) accumulation, glucose uptake, adenosine triphosphat (ATP) production, and mitochondrial content were evaluated. In HEI-OC1 cells, t-BHP induced ROS accumulation and reduced mitochondrial content and oxygen consumption, but the ATP level was unaffected. Additionally, there was increased glucose uptake and lactate release along with elevated expression of HIF-1α, glucose transporter 1, and several glycolytic enzymes. Consistently, noise trauma induced oxidative stress and the expression of HIF-1α and glycolytic enzymes in mice. Thus, we concluded that ROS induced HIF-1α expression, which promoted glycolysis, suggesting a metabolic shift maintained the ATP level to attenuate hair cell damage in NIHL.
Collapse
Affiliation(s)
- Shuo Liang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuohui Dong
- Department of General Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanshan Tian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Ai
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Yu Ai, ; Haibo Wang,
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Yu Ai, ; Haibo Wang,
| |
Collapse
|
8
|
Xiong H, Lai L, Ye Y, Zheng Y. Glucose Protects Cochlear Hair Cells Against Oxidative Stress and Attenuates Noise-Induced Hearing Loss in Mice. Neurosci Bull 2021; 37:657-668. [PMID: 33415566 DOI: 10.1007/s12264-020-00624-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is the key determinant in the pathogenesis of noise-induced hearing loss (NIHL). Given that cellular defense against oxidative stress is an energy-consuming process, the aim of the present study was to investigate whether increasing energy availability by glucose supplementation protects cochlear hair cells against oxidative stress and attenuates NIHL. Our results revealed that glucose supplementation reduced the noise-induced formation of reactive oxygen species (ROS) and consequently attenuated noise-induced loss of outer hair cells, inner hair cell synaptic ribbons, and NIHL in CBA/J mice. In cochlear explants, glucose supplementation increased the levels of ATP and NADPH, as well as attenuating H2O2-induced ROS production and cytotoxicity. Moreover, pharmacological inhibition of glucose transporter type 1 activity abolished the protective effects of glucose against oxidative stress in HEI-OC1 cells. These findings suggest that energy availability is crucial for oxidative stress resistance and glucose supplementation offers a simple and effective approach for the protection of cochlear hair cells against oxidative stress and NIHL.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lan Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yongyi Ye
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
9
|
Chen HC, Wang CH, Chien WC, Chung CH, Shih CP, Lin YC, Li IH, Lin YY, Kuo CY. Dextromethorphan Attenuates Sensorineural Hearing Loss in an Animal Model and Population-Based Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176336. [PMID: 32878128 PMCID: PMC7504445 DOI: 10.3390/ijerph17176336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022]
Abstract
The effect of dextromethorphan (DXM) use in sensorineural hearing loss (SNHL) has not been fully examined. We conducted an animal model and nationwide retrospective matched-cohort study to explore the association between DXM use and SNHL. Eight-week-old CBA/CaJ hearing loss was induced by a white noise 118 dB sound pressure level for 3 h. DXM (30 mg/kg) was administered intraperitoneally for 5 days and boost once round window DXM socking. In population-based study, we examined the medical records over 40 years old in Taiwan’s National Health Insurance Research Database between 2000 and 2015 to establish retrospective matched-cohort to explore the correlation between DXM use and SNHL. Using click auditory brainstem response (ABR), hearing threshold was measured as 48.6 ± 2.9 dB in control mice compared with 42.6 ± 7.0 dB in DXM mice, which differed significantly (p = 0.002) on day 60 after noise exposure with a larger ABR wave I amplitude in DXM mice. In human study, we used a Cox regression hazard model to indicate that a significantly lower percentage individuals developed SNHL compared with and without DXM use (0.44%, 175/39,895 vs. 1.05%, 1675/159,580, p < 0.001). After adjustment for age and other variables [adjusted hazard ratio: 0.725 (95% confidence interval: 0.624–0.803, p < 0.001)], this study also demonstrated that DXM use appeared to reduce the risk of developing SNHL. This animal study demonstrated that DXM significantly attenuated noise-induced hearing loss. In human study, DXM use may have a protective effect against SNHL.
Collapse
Affiliation(s)
- Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.W.); (C.-P.S.); (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.)
- Correspondence: ; Tel.: +886-2-8792-7192; Fax: +886-2-8792-7193
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.W.); (C.-P.S.); (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Wu-Chien Chien
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan; (W.-C.C.); (C.-H.C.)
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan; (W.-C.C.); (C.-H.C.)
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.W.); (C.-P.S.); (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.)
| | - Yi-Chun Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.W.); (C.-P.S.); (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - I-Hsun Li
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Yuan-Yung Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.W.); (C.-P.S.); (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.W.); (C.-P.S.); (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.)
| |
Collapse
|
10
|
Lee SY, Han JJ, Lee SY, Jung G, Min HJ, Song JJ, Koo JW. Outcomes of Peptide Vaccine GV1001 Treatment in a Murine Model of Acute Noise-Induced Hearing Loss. Antioxidants (Basel) 2020; 9:antiox9020112. [PMID: 32012778 PMCID: PMC7070461 DOI: 10.3390/antiox9020112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/19/2020] [Accepted: 01/25/2020] [Indexed: 11/16/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is primarily caused by damage to cochlear hair cells, associated with synaptopathy. The novel cell-penetrating peptide GV1001, an antitumor agent, also has antioxidant and anti-inflammatory effects, and is otoprotective in a murine model of kanamycin-induced ototoxicity. Here, we explored whether GV1001 attenuated NIHL, and the underlying mechanism at play. We established an NIHL model by exposing 4- to 6-week-old C57/BL6 mice to white noise at 120 dB SPL for 2 h, resulting in a significant permanent threshold shift (PTS). We then subcutaneously injected saline (control), GV1001, or dexamethasone immediately after cessation of PTS-noise exposure and evaluated the threshold shifts, structural damages to outer hair cells (OHCs), and ribbon synapses. We also verified whether GV1001 attenuates oxidative stress at the level of lipid peroxidation or protein nitration in OHCs 1 h after exposure to white noise at 120 dB SPL. GV1001-treated mice exhibited significantly less hearing threshold shifts over 2 weeks and preserved OHCs and ribbon synapses compared with controls. Similarly, dexamethasone-treated mice showed comparable protection against NIHL. Importantly, GV1001 markedly attenuated oxidative stress in OHCs. Our findings suggest that GV1001 may protect against NIHL by lowering oxidative stress and may serve as preventive or adjuvant treatment.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 463-707, Korea; (S.-Y.L.); (G.J.); (H.J.M.); (J.-J.S.)
| | - Jae Joon Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Seoul Hospital, Seoul 04401, Korea;
| | - Sang-Youp Lee
- Department of Otolaryngology, Wonkwang University Hospital, Wonkwang University School of Medicine, Iksan 15865, Korea;
| | - Gaon Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 463-707, Korea; (S.-Y.L.); (G.J.); (H.J.M.); (J.-J.S.)
| | - Hyun Jin Min
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 463-707, Korea; (S.-Y.L.); (G.J.); (H.J.M.); (J.-J.S.)
| | - Jae-Jin Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 463-707, Korea; (S.-Y.L.); (G.J.); (H.J.M.); (J.-J.S.)
| | - Ja-Won Koo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 463-707, Korea; (S.-Y.L.); (G.J.); (H.J.M.); (J.-J.S.)
- Correspondence:
| |
Collapse
|
11
|
C Kohrman D, Wan G, Cassinotti L, Corfas G. Hidden Hearing Loss: A Disorder with Multiple Etiologies and Mechanisms. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a035493. [PMID: 30617057 DOI: 10.1101/cshperspect.a035493] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hidden hearing loss (HHL), a recently described auditory disorder, has been proposed to affect auditory neural processing and hearing acuity in subjects with normal audiometric thresholds, particularly in noisy environments. In contrast to central auditory processing disorders, HHL is caused by defects in the cochlea, the peripheral auditory organ. Noise exposure, aging, ototoxic drugs, and peripheral neuropathies are some of the known risk factors for HHL. Our knowledge of the causes and mechanisms of HHL are based primarily on animal models. However, recent clinical studies have also shed light on the etiology and prevalence of this cochlear disorder and how it may affect auditory perception in humans. Here, we review the current knowledge regarding the causes and cellular mechanisms of HHL, summarize information on available noninvasive tests for differential diagnosis, and discuss potential therapeutic approaches for treatment of HHL.
Collapse
Affiliation(s)
- David C Kohrman
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, Jiangsu Province, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210061, Jiangsu Province, China
| | - Luis Cassinotti
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| | - Gabriel Corfas
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
12
|
Holt AG, Kühl A, Braun RD, Altschuler R. The rat as a model for studying noise injury and otoprotection. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3681. [PMID: 31795688 DOI: 10.1121/1.5131344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A major challenge for those studying noise-induced injury pre-clinically is the selection of an animal model. Noise injury models are particularly relevant in an age when people are constantly bombarded by loud noise due to occupation and/or recreation. The rat has been widely used for noise-related morphological, physiological, biochemical, and molecular assessment. Noise exposure resulting in a temporary (TTS) or permanent threshold shift (PTS) yields trauma in peripheral and central auditory related pathways. While the precise nature of noise-related injuries continues to be delineated, both PTS and TTS (with or without hidden hearing loss) result in homeostatic changes implicated in conditions such as tinnitus and hyperacusis. Compared to mice, rats generally tolerate exposure to loud sounds reasonably well, often without exhibiting other physical non-inner ear related symptoms such as death, loss of consciousness, or seizures [Skradski, Clark, Jiang, White, Fu, and Ptacek (2001). Neuron 31, 537-544; Faingold (2002). Hear. Res. 168, 223-237; Firstova, Abaimov, Surina, Poletaeva, Fedotova, and Kovalev (2012). Bull Exp. Biol. Med. 154, 196-198; De Sarro, Russo, Citraro, and Meldrum (2017). Epilepsy Behav. 71, 165-173]. This ability of the rat to thrive following noise exposure permits study of long-term effects. Like the mouse, the rat also offers a well-characterized genome allowing genetic manipulations (i.e., knock-out, viral-based gene expression modulation, and optogenetics). Rat models of noise-related injury also provide valuable information for understanding mechanistic changes to identify therapeutic targets for treatment. This article provides a framework for selection of the rat as a model for noise injury studies.
Collapse
Affiliation(s)
- Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - André Kühl
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, 550 East Canfield Avenue, 454 Lande Building, Detroit, Michigan 48201, USA
| | - Richard Altschuler
- Department of Otolaryngology; Cell and Developmental Biology, Kresge Hearing Research Institute, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
13
|
Abstract
Hearing loss is present in millions of people worldwide. Current treatment for patients with severe to profound hearing loss consists of cochlear implantation. Providing the cochlear nerve is intact, patients generally benefit greatly from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. Ongoing research in cell transplantation and gene therapy promises to lead to new developments that will improve the function of cochlear implants. Translation of these experimental approaches is presently at an early stage. This review focuses on the application of biological therapies in severe hearing loss and discusses some of the barriers to translating basic scientific research into clinical reality. We emphasize the application of these novel therapies to cochlear implantation.
Collapse
Affiliation(s)
- A Roemer
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - H Staecker
- Department of Otolaryngology - Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - S Sasse
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - T Lenarz
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - A Warnecke
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
14
|
Inner Ear Hair Cell Protection in Mammals against the Noise-Induced Cochlear Damage. Neural Plast 2018; 2018:3170801. [PMID: 30123244 PMCID: PMC6079343 DOI: 10.1155/2018/3170801] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Inner ear hair cells are mechanosensory receptors that perceive mechanical sound and help to decode the sound in order to understand spoken language. Exposure to intense noise may result in the damage to the inner ear hair cells, causing noise-induced hearing loss (NIHL). Particularly, the outer hair cells are the first and the most affected cells in NIHL. After acoustic trauma, hair cells lose their structural integrity and initiate a self-deterioration process due to the oxidative stress. The activation of different cellular death pathways leads to complete hair cell death. This review specifically presents the current understanding of the mechanism exists behind the loss of inner ear hair cell in the auditory portion after noise-induced trauma. The article also explains the recent hair cell protection strategies to prevent the damage and restore hearing function in mammals.
Collapse
|
15
|
Abstract
The synapse between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) has been identified as a sensitive structure to noise-induced damage in the mammalian cochlea. Since this synapse provides the major information pathway from the cochlea to the auditory brain, it is important to maintain its integrity. Neurotrophin-3 (NT-3) has been known to play an important role in the development and the functional maintenance of this synapse. Application of exogenous NT-3, or overexpression of this gene in a transgenic animal model, have shown the value to protect this synapse from noise-induced damage. In the present study, NT-3 overexpression was induced by cochlear gene transfection before noise exposure via the use of an adeno-associated viral (AAV) vector. We found that such an overexpression provided a significant synaptic protection against a noise exposure that caused massive damage to the synapses, likely due to it promoting the repair of the synapse after the initial damage.
Collapse
|
16
|
Xiong H, Ou Y, Xu Y, Huang Q, Pang J, Lai L, Zheng Y. Resveratrol Promotes Recovery of Hearing following Intense Noise Exposure by Enhancing Cochlear SIRT1 Activity. Audiol Neurootol 2018; 22:303-310. [DOI: 10.1159/000485312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022] Open
Abstract
The sirtuin SIRT1 is a highly conserved nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylase known to have protective effects against a wide range of neurological disorders. In the present study, we discovered that C57BL/6 mice fed a long-term diet supplemented with high-dose resveratrol exhibited increased cochlear SIRT1 activity and presented a better recovery of hearing and less loss of hair cells after intense noise exposure compared with those fed a standard chew. Moreover, resveratrol attenuated cochlear SIRT1 decrease and reduced oxidative stress in the cochlea after noise exposure. These results suggest a considerable therapeutic potential of resveratrol for the treatment of noise-induced hearing loss.
Collapse
|
17
|
Sale PJP, Uschakov A, Saief T, Rowe DP, Abbott CJ, Luu CD, Hampson AJ, O'Leary SJ, Sly DJ. Cannula-based drug delivery to the guinea pig round window causes a lasting hearing loss that may be temporarily mitigated by BDNF. Hear Res 2017; 356:104-115. [PMID: 29089185 DOI: 10.1016/j.heares.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 09/22/2017] [Accepted: 10/11/2017] [Indexed: 01/30/2023]
Abstract
Sustained local delivery of drugs to the inner ear may be required for future regenerative and protective strategies. The round window is surgically accessible and a promising delivery route. To be viable, a delivery system should not cause hearing loss. This study determined the effect on hearing of placing a drug-delivery microcatheter on to the round window, and delivering either artificial perilymph (AP) or brain-derived neurotrophic factor (BDNF) via this catheter with a mini-osmotic pump. Auditory brainstem responses (ABRs) were monitored for 4 months after surgery, while the AP or BDNF was administered for the first month. The presence of the microcatheter - whether dry or when delivering AP or BDNF for 4 weeks - was associated with an increase in ABR thresholds of up to 15 dB, 16 weeks after implantation. This threshold shift was, in part, delayed by the delivery of BDNF. We conclude that the chronic presence of a microcatheter in the round window niche causes hearing loss, and that this is exacerbated by delivery of AP, and ameliorated temporarily by delivery of BDNF.
Collapse
Affiliation(s)
- Phillip J P Sale
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - Aaron Uschakov
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - Tasfia Saief
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - David P Rowe
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - Carla J Abbott
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Amy J Hampson
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - Stephen J O'Leary
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia.
| | - David J Sly
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia; Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn 3122, Australia
| |
Collapse
|
18
|
Le TN, Straatman LV, Lea J, Westerberg B. Current insights in noise-induced hearing loss: a literature review of the underlying mechanism, pathophysiology, asymmetry, and management options. J Otolaryngol Head Neck Surg 2017; 46:41. [PMID: 28535812 PMCID: PMC5442866 DOI: 10.1186/s40463-017-0219-x] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/15/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Noise-induced hearing loss is one of the most common forms of sensorineural hearing loss, is a major health problem, is largely preventable and is probably more widespread than revealed by conventional pure tone threshold testing. Noise-induced damage to the cochlea is traditionally considered to be associated with symmetrical mild to moderate hearing loss with associated tinnitus; however, there is a significant number of patients with asymmetrical thresholds and, depending on the exposure, severe to profound hearing loss as well. MAIN BODY Recent epidemiology and animal studies have provided further insight into the pathophysiology, clinical findings, social and economic impacts of noise-induced hearing loss. Furthermore, it is recently shown that acoustic trauma is associated with vestibular dysfunction, with associated dizziness that is not always measurable with current techniques. Deliberation of the prevalence, treatment and prevention of noise-induced hearing loss is important and timely. Currently, prevention and protection are the first lines of defence, although promising protective effects are emerging from multiple different pharmaceutical agents, such as steroids, antioxidants and neurotrophins. CONCLUSION This review provides a comprehensive update on the pathophysiology, investigations, prevalence of asymmetry, associated symptoms, and current strategies on the prevention and treatment of noise-induced hearing loss.
Collapse
Affiliation(s)
- Trung N. Le
- Division of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC Canada
| | - Louise V. Straatman
- Division of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC Canada
| | - Jane Lea
- Division of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC Canada
| | - Brian Westerberg
- Division of Otolaryngology - Head & Neck Surgery, Department of Surgery, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
19
|
Roemer A, Staecker H, Sasse S, Lenarz T, Warnecke A. [Biological therapies in otology. German version]. HNO 2017; 65:571-585. [PMID: 28204850 DOI: 10.1007/s00106-016-0304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Millions of people worldwide suffer from hearing loss. Current treatment for patients with severe to profound hearing loss consists of cochlear implants. Providing the cochlear nerve is intact, patients generally benefit enormously from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. New therapeutic concepts based on cell transplantation and gene therapy are developing rapidly, at least in the research sector. Compared to the wealth of basic research available in this area, translation of these new experimental approaches into clinical application is presently at a very early stage. The current review focuses on translatable treatment concepts and discusses the barriers that need to be overcome in order to translate basic scientific research into clinical reality. Furthermore, the first examples of clinical application of biological therapies in severe hearing loss are presented, particularly in connection with cochlear implants.
Collapse
Affiliation(s)
- A Roemer
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| | - H Staecker
- Department of Otolaryngology - Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - S Sasse
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - T Lenarz
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - A Warnecke
- Klinik für Hals-Nasen-Ohren-Heilkunde OE 6500 Hannover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| |
Collapse
|
20
|
Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation. Neural Plast 2016; 2016:2523458. [PMID: 28119785 PMCID: PMC5227174 DOI: 10.1155/2016/2523458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 01/29/2023] Open
Abstract
Hair cells (HCs) are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.
Collapse
|
21
|
Roemer A, Köhl U, Majdani O, Klöß S, Falk C, Haumann S, Lenarz T, Kral A, Warnecke A. Biohybrid cochlear implants in human neurosensory restoration. Stem Cell Res Ther 2016; 7:148. [PMID: 27717379 PMCID: PMC5055669 DOI: 10.1186/s13287-016-0408-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/10/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The success of cochlear implantation may be further improved by minimizing implantation trauma. The physical trauma of implantation and subsequent immunological sequelae can affect residual hearing and the viability of the spiral ganglion. An ideal electrode should therefore decrease post-implantation trauma and provide support to the residual spiral ganglion population. Combining a flexible electrode with cells producing and releasing protective factors could present a potential means to achieve this. Mononuclear cells obtained from bone marrow (BM-MNC) consist of mesenchymal and hematopoietic progenitor cells. They possess the innate capacity to induce repair of traumatized tissue and to modulate immunological reactions. METHODS Human bone marrow was obtained from the patients that received treatment with biohybrid electrodes. Autologous mononuclear cells were isolated from bone marrow (BM-MNC) by centrifugation using the Regenlab™ THT-centrifugation tubes. Isolated BM-MNC were characterised using flow cytometry. In addition, the release of cytokines was analysed and their biological effect tested on spiral ganglion neurons isolated from neonatal rats. Fibrin adhesive (Tisseal™) was used for the coating of silicone-based cochlear implant electrode arrays for human use in order to generate biohybrid electrodes. Toxicity of the fibrin adhesive and influence on insertion, as well on the cell coating, was investigated. Furthermore, biohybrid electrodes were implanted in three patients. RESULTS Human BM-MNC release cytokines, chemokines, and growth factors that exert anti-inflammatory and neuroprotective effects. Using fibrin adhesive as a carrier for BM-MNC, a simple and effective cell coating procedure for cochlear implant electrodes was developed that can be utilised on-site in the operating room for the generation of biohybrid electrodes for intracochlear cell-based drug delivery. A safety study demonstrated the feasibility of autologous progenitor cell transplantation in humans as an adjuvant to cochlear implantation for neurosensory restoration. CONCLUSION This is the first report of the use of autologous cell transplantation to the human inner ear. Due to the simplicity of this procedure, we hope to initiate its widespread utilization in various fields.
Collapse
Affiliation(s)
- Ariane Roemer
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ulrike Köhl
- Institute for Cellular Therapeutics, IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Omid Majdani
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Stephan Klöß
- Institute for Cellular Therapeutics, IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christine Falk
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sabine Haumann
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andrej Kral
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all”, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
22
|
Effect of repetitive transcranial magnetic stimulation on auditory function following acoustic trauma. Neurol Sci 2016; 37:1511-6. [DOI: 10.1007/s10072-016-2603-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/03/2016] [Indexed: 02/06/2023]
|
23
|
Suzuki J, Corfas G, Liberman MC. Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure. Sci Rep 2016; 6:24907. [PMID: 27108594 PMCID: PMC4842978 DOI: 10.1038/srep24907] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/04/2016] [Indexed: 12/27/2022] Open
Abstract
In acquired sensorineural hearing loss, such as that produced by noise or aging, there can be massive loss of the synaptic connections between cochlear sensory cells and primary sensory neurons, without loss of the sensory cells themselves. Because the cell bodies and central projections of these cochlear neurons survive for months to years, there is a long therapeutic window in which to re-establish functional connections and improve hearing ability. Here we show in noise-exposed mice that local delivery of neurotrophin-3 (NT-3) to the round window niche, 24 hours after an exposure that causes an immediate loss of up to 50% loss of synapses in the cochlear basal region, can regenerate pre- and post-synaptic elements at the hair cell / cochlear nerve interface. This synaptic regeneration, as documented by confocal microscopy of immunostained cochlear sensory epithelia, was coupled with a corresponding functional recovery, as seen in the suprathreshold amplitude of auditory brainstem response Wave 1. Cochlear delivery of neurotrophins in humans is likely achievable as an office procedure via transtympanic injection, making our results highly significant in a translational context.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Otology and Laryngology, Harvard Medical School, Boston MA 02115, USA.,Eaton-Peabody Laboratories, Massachusetts Eye &Ear Infirmary, Boston MA 02114, USA.,Department of Otorhinolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - M Charles Liberman
- Department of Otology and Laryngology, Harvard Medical School, Boston MA 02115, USA.,Eaton-Peabody Laboratories, Massachusetts Eye &Ear Infirmary, Boston MA 02114, USA
| |
Collapse
|