1
|
Mohammed A, Shariati F, Paranji N, Waghray N. Primary follicular lymphoma of colon: A case series and review of literature. Clin Case Rep 2021; 9:e04486. [PMID: 34322250 PMCID: PMC8301556 DOI: 10.1002/ccr3.4486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Follicular lymphoma of the colon is rare, accounting for 1% to 2% of cases in the gastrointestinal tract. Despite the absence of randomized clinical trials, NCCN stage III and IV colonic follicular lymphomas are routinely treated with chemotherapy with good clinical response. We present 2 cases of advanced stage follicular lymphoma of colon that were effectively treated with bendamustine-based chemotherapy regimens.
Collapse
Affiliation(s)
- Abdul Mohammed
- Department of Gastroenterology and HepatologyMetroHealth Medical CenterClevelandOHUSA
| | - Farnaz Shariati
- Department of Gastroenterology and HepatologyMetroHealth Medical CenterClevelandOHUSA
| | - Neethi Paranji
- Department of Gastroenterology and HepatologyMetroHealth Medical CenterClevelandOHUSA
| | - Nisheet Waghray
- Department of Gastroenterology and HepatologyMetroHealth Medical CenterClevelandOHUSA
| |
Collapse
|
2
|
Copanlisib synergizes with conventional and targeted agents including venetoclax in B- and T-cell lymphoma models. Blood Adv 2021; 4:819-829. [PMID: 32126142 DOI: 10.1182/bloodadvances.2019000844] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/31/2020] [Indexed: 01/26/2023] Open
Abstract
Copanlisib is a pan-class I phosphoinositide 3-kinase (PI3K) inhibitor with preferred activity toward PI3Kα and PI3Kδ. Despite the clear overall clinical benefit, the number of patients achieving complete remissions with the single agent is relatively low, a problem shared by the vast majority of targeted agents. Here, we searched for novel copanlisib-based combinations. Copanlisib was tested as a single agent, in combination with an additional 17 drugs in 26 cell lines derived from mantle cell lymphoma (MCL), marginal zone lymphoma (MZL), and T-cell lymphomas. In vivo experiments, transcriptome analyses, and immunoblotting experiments were also performed. Copanlisib as a single agent showed in vitro dose-dependent antitumor activity in the vast majority of the models. Combination screening identified several compounds that synergized with copanlisib. The strongest combination was with the B-cell lymphoma 2 (BCL2) inhibitor venetoclax. The benefit of the combination over single agents was also validated in an MZL xenograft model and in MCL primary cells, and was due to increased induction of apoptosis, an effect likely sustained by the reduction of the antiapoptotic proteins myeloid cell leukemia 1 (MCL1) and BCL-XL, observed in MCL and MZL cell lines, respectively. These data supported the rationale for the design of the Swiss Group for Clinical Cancer Research (SAKK) 66/18 phase 1 study currently exploring the combination of copanlisib and venetoclax in relapsed/refractory lymphomas.
Collapse
|
3
|
Zhao X, Wang MY, Jiang H, Lwin T, Park PM, Gao J, Meads MB, Ren Y, Li T, Sun J, Fahmi NA, Singh S, Sehgal L, Wang X, Silva AS, Sotomayor EM, Shain KH, Cleveland JL, Wang M, Zhang W, Qi J, Shah BD, Tao J. Transcriptional programming drives Ibrutinib-resistance evolution in mantle cell lymphoma. Cell Rep 2021; 34:108870. [PMID: 33730585 PMCID: PMC8057695 DOI: 10.1016/j.celrep.2021.108870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
Ibrutinib, a bruton's tyrosine kinase (BTK) inhibitor, provokes robust clinical responses in aggressive mantle cell lymphoma (MCL), yet many patients relapse with lethal Ibrutinib-resistant (IR) disease. Here, using genomic, chemical proteomic, and drug screen profiling, we report that enhancer remodeling-mediated transcriptional activation and adaptive signaling changes drive the aggressive phenotypes of IR. Accordingly, IR MCL cells are vulnerable to inhibitors of the transcriptional machinery and especially so to inhibitors of cyclin-dependent kinase 9 (CDK9), the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Further, CDK9 inhibition disables reprogrammed signaling circuits and prevents the emergence of IR in MCL. Finally, and importantly, we find that a robust and facile ex vivo image-based functional drug screening platform can predict clinical therapeutic responses of IR MCL and identify vulnerabilities that can be targeted to disable the evolution of IR.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Adenine/therapeutic use
- Animals
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cyclin-Dependent Kinase 9/antagonists & inhibitors
- Cyclin-Dependent Kinase 9/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enhancer Elements, Genetic/genetics
- Humans
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/enzymology
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/pathology
- Male
- Mice, Inbred NOD
- Mice, SCID
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Protein Kinases/metabolism
- RNA Polymerase II/metabolism
- Signal Transduction/drug effects
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transcriptome/genetics
- Treatment Outcome
- Mice
Collapse
Affiliation(s)
- Xiaohong Zhao
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Michelle Y Wang
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Huijuan Jiang
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Tint Lwin
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paul M Park
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Jing Gao
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Mark B Meads
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yuan Ren
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Tao Li
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Naima Ahmed Fahmi
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Satishkumar Singh
- Department of Internal Medicine, The Ohio State University, Columbus, OH 32816, USA
| | - Lalit Sehgal
- Department of Internal Medicine, The Ohio State University, Columbus, OH 32816, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ariosto S Silva
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eduardo M Sotomayor
- Department of Hematology and Oncology, George Washington University, Washington, D.C. 20052, USA
| | - Kenneth H Shain
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John L Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Michael Wang
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Jun Qi
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Bijal D Shah
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Jianguo Tao
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
4
|
Molecular signatures for CCN1, p21 and p27 in progressive mantle cell lymphoma. J Cell Commun Signal 2018; 13:421-434. [PMID: 30465121 DOI: 10.1007/s12079-018-0494-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/01/2018] [Indexed: 01/17/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a comparatively rare non-Hodgkin's lymphoma characterised by overexpression of cyclin D1. Many patients present with or progress to advanced stage disease within 3 years. MCL is considered an incurable disease with median survival between 3 and 4 years. We have investigated the role(s) of CCN1 (CYR61) and cell cycle regulators in progressive MCL. We have used the human MCL cell lines REC1 < G519 < JVM2 as a model for disease aggression. The magnitude of CCN1 expression in human MCL cells is REC1 > G519 > JVM2 cells by RQ-PCR, depicting a decrease in CCN1 expression with disease progression. Investigation of CCN1 isoform expression by western blotting showed that whilst expression of full-length CCN1 was barely altered in the cell lines, expression of truncated forms (18-20 and 28-30 kDa) decreased with disease progression. We have then demonstrated that cyclin D1 and cyclin dependent kinase inhibitors (p21CIP1and p27KIP1) are also involved in disease progression. Cyclin D1 was highly expressed in REC1 cells (OD: 1.0), reduced to one fifth in G519 cells (OD: 0.2) and not detected by western blotting in JVM2 cells. p27KIP1 followed a similar profile of expression as cyclin D1. Conversely, p21CIP1 was absent in the REC1 cells and showed increasing expression in G519 and JVM2 cells. Subcellular localization detected p21CIP1/ p27KIP1 primarily within the cytoplasm and absent from the nucleus, consistent with altered roles in treatment resistance. Dysregulation of the CCN1 truncated forms are associated with MCL progression. In conjunction with reduced expression of cyclin D1 and increased expression of p21, this molecular signature may depict aggressive disease and treatment resistance.
Collapse
|
5
|
Shah B, Zhao X, Silva AS, Shain KH, Tao J. Resistance to Ibrutinib in B Cell Malignancies: One Size Does Not Fit All. Trends Cancer 2018; 4:197-206. [PMID: 29506670 DOI: 10.1016/j.trecan.2018.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/28/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022]
Abstract
Ibrutinib resistance, as a result of coordinated rewiring of signaling networks and enforced tumor microenvironment (TME)-lymphoma interactions, drives unrestrained proliferation and disease progression. To combat resistance mechanisms, we must identify the compensatory resistance pathways and the central modulators of reprogramming events. Targeting the transcriptome and kinome reprogramming of lymphoma cells represents a rational approach to mitigate ibrutinib resistance in B cell malignancies. However, with the apparent heterogeneity and plasticity of tumors shown in therapy response, a one size fits all approach may be unattainable. To this end, a reliable and real-time drug screening platform to tailor effective individualized therapies in patients with B cell malignancies is warranted. Here, we describe the complexity of ibrutinib resistance in B cell lymphomas and the current approaches, including a drug screening assay, which has the potential to further explore the mechanisms of ibrutinib resistance and to design effective individualized combination therapies to overcome resistance and disable aggressive lymphomas (see Outstanding Questions).
Collapse
Affiliation(s)
- Bijal Shah
- Department of Malignant Hematology and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Xiaohong Zhao
- Department of Malignant Hematology and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ariosto S Silva
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kenneth H Shain
- Department of Malignant Hematology and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jianguo Tao
- Department of Hematopathology and Laboratory Medicine and Department of Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
6
|
Incrocci R, Barse L, Stone A, Vagvala S, Montesano M, Subramaniam V, Swanson-Mungerson M. Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A) enhances IL-10 production through the activation of Bruton's tyrosine kinase and STAT3. Virology 2016; 500:96-102. [PMID: 27792904 DOI: 10.1016/j.virol.2016.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/29/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
Previous data demonstrate that Epstein-Barr Virus Latent Membrane Protein 2A (LMP2A) enhances IL-10 to promote the survival of LMP2A-expressing B cell lymphomas. Since STAT3 is an important regulator of IL-10 production, we hypothesized that LMP2A activates a signal transduction cascade that increases STAT3 phosphorylation to enhance IL-10. Using LMP2A-negative and -positive B cell lines, the data indicate that LMP2A requires the early signaling molecules of the Syk/RAS/PI3K pathway to increase IL-10. Additional studies indicate that the PI3K-regulated kinase, BTK, is responsible for phosphorylating STAT3, which ultimately mediates the LMP2A-dependent increase in IL-10. These data are the first to show that LMP2A signaling results in STAT3 phosphorylation in B cells through a PI3K/BTK-dependent pathway. With the use of BTK and STAT3 inhibitors to treat B cell lymphomas in clinical trials, these findings highlight the possibility of using new pharmaceutical approaches to treat EBV-associated lymphomas that express LMP2A.
Collapse
Affiliation(s)
- Ryan Incrocci
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Levi Barse
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Amanda Stone
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Sai Vagvala
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Michael Montesano
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Vijay Subramaniam
- Department of Biomedical Sciences, College of Health Sciences, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, United States.
| |
Collapse
|
7
|
Restelli V, Chilà R, Lupi M, Rinaldi A, Kwee I, Bertoni F, Damia G, Carrassa L. Characterization of a mantle cell lymphoma cell line resistant to the Chk1 inhibitor PF-00477736. Oncotarget 2016; 6:37229-40. [PMID: 26439697 PMCID: PMC4741926 DOI: 10.18632/oncotarget.5954] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/17/2015] [Indexed: 12/24/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma characterized by the chromosomal translocation t(11;14) that leads to constitutive expression of cyclin D1, a master regulator of the G1-S phase. Chk1 inhibitors have been recently shown to be strongly effective as single agents in MCL. To investigate molecular mechanisms at the basis of Chk1 inhibitor activity, a MCL cell line resistant to the Chk1 inhibitor PF-00477736 (JEKO-1 R) was obtained and characterized. The JEKO-1 R cell line was cross resistant to another Chk1 inhibitor (AZD-7762) and to the Wee1 inhibitor MK-1775. It displayed a shorter doubling time than parental cell line, likely due to a faster S phase. Cyclin D1 expression levels were decreased in resistant cell line and its re-overexpression partially re-established PF-00477736 sensitivity. Gene expression profiling showed an enrichment in gene sets involved in pro-survival pathways in JEKO-1 R. Dasatinib treatment partly restored PF-00477736 sensitivity in resistant cells suggesting that the pharmacological interference of pro-survival pathways can overcome the resistance to Chk1 inhibitors. These data further corroborate the involvement of the t(11;14) in cellular sensitivity to Chk1 inhibitors, fostering the clinical testing of Chk1 inhibitors as single agents in MCL.
Collapse
Affiliation(s)
- Valentina Restelli
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Rosaria Chilà
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Monica Lupi
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Andrea Rinaldi
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland
| | - Ivo Kwee
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland.,Dalle Molle Institute for Artificial Intelligence (IDSIA), Manno, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Francesco Bertoni
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland.,Lymphoma Unit, IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Giovanna Damia
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Laura Carrassa
- Laboratory of Molecular Pharmacology and Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS- Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| |
Collapse
|
8
|
Salihoglu A, Ar MC, Soysal T. Novelties in the management of B-cell malignancies: B-cell receptor signaling inhibitors and lenalidomide. Expert Rev Hematol 2015; 8:765-83. [PMID: 26413907 DOI: 10.1586/17474086.2015.1091301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
B-cell lymphoproliferative disorders comprise 85% of Non-Hodgkin's lymphomas. Despite successful chemoimmunotherapy regimens, responses are not durable and the outcome is fatal in a considerable portion of patients. There is an inevitable need for less toxic and more potent therapeutic agents. Over the recent years, a plethora of agents including monoclonal antibodies, Bcl-2 antagonists, tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, mTOR inhibitors and immunomodulatory drugs have been developed in B-cell malignancies. The aim of this paper is to focus on B-cell receptor signaling inhibitors and lenalidomide as an immunomodulatory drug and to provide insight on how and when to incorporate these agents into the treatment algorithms.
Collapse
Affiliation(s)
- Ayse Salihoglu
- a Department of Internal Medicine, Division of Haematology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Muhlis Cem Ar
- a Department of Internal Medicine, Division of Haematology, Istanbul University, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | | |
Collapse
|
9
|
Zhao X, Bodo J, Sun D, Durkin L, Lin J, Smith MR, Hsi ED. Combination of ibrutinib with ABT-199: synergistic effects on proliferation inhibition and apoptosis in mantle cell lymphoma cells through perturbation of BTK, AKT and BCL2 pathways. Br J Haematol 2015; 168:765-8. [PMID: 25284608 DOI: 10.1111/bjh.13149] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoxian Zhao
- Department of Laboratory Medicine, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Parikh K, Cang S, Sekhri A, Liu D. Selective inhibitors of nuclear export (SINE)--a novel class of anti-cancer agents. J Hematol Oncol 2014; 7:78. [PMID: 25316614 PMCID: PMC4200201 DOI: 10.1186/s13045-014-0078-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/09/2014] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the nucleo-cytoplasmic transport of proteins plays an important role in carcinogenesis. The nuclear export of proteins depends on the activity of transport proteins, exportins. Exportins belong to the karyopherin β superfamily. Exportin-1 (XPO1), also known as chromosomal region maintenance 1 (CRM1), mediates transport of around 220 proteins. In this review, we summarized the development of a new class of antitumor drugs, collectively known as selective inhibitors of nuclear export (SINE). KPT-330 (selinexor) as an oral agent is showing activities in early clinical trials in both solid tumors and hematological malignancies.
Collapse
Affiliation(s)
| | | | | | - Delong Liu
- Henan Tumor Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Shah N, Hutchinson C, Rule S. Ibrutinib for the treatment of mantle cell lymphoma. Expert Rev Hematol 2014; 7:521-31. [DOI: 10.1586/17474086.2014.951323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Novero A, Ravella PM, Chen Y, Dous G, Liu D. Ibrutinib for B cell malignancies. Exp Hematol Oncol 2014; 3:4. [PMID: 24472371 PMCID: PMC3913970 DOI: 10.1186/2162-3619-3-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/27/2014] [Indexed: 02/05/2023] Open
Abstract
Research over the role of Bruton’s agammaglobulinemia tyrosine kinase (BTK) in B-lymphocyte development, differentiation, signaling and survival has led to better understanding of the pathogenesis of B-cell malignancies. Down-regulation of BTK activity is an attractive novel strategy for treating patients with B-cell malignancies. Ibrutinib (PCI-32765), a potent inhibitor of BTK induces impressive responses in B-cell malignancies through irreversible bond with cysteine-481 in the active site of BTK (TH/SH1 domain) and inhibits BTK phosphorylation on Tyr223. This review discussed in details the role of BTK in B-cell signaling, molecular interactions between B cell lymphoma/leukemia cells and their microenvironment. Clinical trials of the novel BTK inhibitor, ibrutinib (PCI-32765), in B cell malignancies were summarized.
Collapse
Affiliation(s)
| | | | | | | | - Delong Liu
- Institute of Hematology, Henan Tumor Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|