Bertero E, Heusch G, Münzel T, Maack C. A pathophysiological compass to personalize antianginal drug treatment.
Nat Rev Cardiol 2021;
18:838-852. [PMID:
34234310 DOI:
10.1038/s41569-021-00573-w]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
Myocardial ischaemia results from coronary macrovascular or microvascular dysfunction compromising the supply of oxygen and nutrients to the myocardium. The underlying pathophysiological processes are manifold and encompass atherosclerosis of epicardial coronary arteries, vasospasm of large or small vessels and microvascular dysfunction - the clinical relevance of which is increasingly being appreciated. Myocardial ischaemia can have a broad spectrum of clinical manifestations, together denoted as chronic coronary syndromes. The most common antianginal medications relieve symptoms by eliciting coronary vasodilatation and modulating the determinants of myocardial oxygen consumption, that is, heart rate, myocardial wall stress and ventricular contractility. In addition, cardiac substrate metabolism can be altered to alleviate ischaemia by modulating the efficiency of myocardial oxygen use. Although a universal agreement exists on the prognostic importance of lifestyle interventions and event prevention with aspirin and statin therapy, the optimal antianginal treatment for patients with chronic coronary syndromes is less well defined. The 2019 guidelines of the ESC recommend a personalized approach, in which antianginal medications are tailored towards an individual patient's comorbidities and haemodynamic profile. Although no antianginal medication improves survival, their efficacy for reducing symptoms profoundly depends on the underlying mechanism of the angina. In this Review, we provide clinicians with a rationale for when to use which compound or combination of drugs on the basis of the pathophysiology of the angina and the mode of action of antianginal medications.
Collapse