1
|
Sharipov AS, Loukhovitski BI. Energy disposal into the vibrational degrees of freedom of bimolecular reaction products: Key factors and simple model. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
2
|
Pandit S, Hornung B, Dunning GT, Preston TJ, Brazener K, Orr-Ewing AJ. Primary vs. secondary H-atom abstraction in the Cl-atom reaction with n-pentane. Phys Chem Chem Phys 2018; 19:1614-1626. [PMID: 27995254 DOI: 10.1039/c6cp07164c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Velocity map imaging (VMI) measurements and quasi-classical trajectory (QCT) calculations on a newly developed, global potential energy surface (PES) combine to reveal the detailed mechanisms of reaction of Cl atoms with n-pentane. Images of the HCl (v = 0, J = 1, 2 and 3) products of reaction at a mean collision energy of 33.5 kJ mol-1 determine the centre-of-mass frame angular scattering and kinetic energy release distributions. The HCl products form with relative populations of J = 0-5 levels that fit to a rotational temperature of 138 ± 13 K. Product kinetic energy release distributions agree well with those derived from a previous VMI study of the pentyl radical co-product [Estillore et al., J. Chem. Phys. 2010, 132, 164313], but the angular distributions show more pronounced forward scattering. The QCT calculations reproduce many of the experimental observations, and allow comparison of the site-specific dynamics of abstraction of primary and secondary H-atoms. They also quantify the relative reactivity towards Cl atoms of the three different H-atom environments in n-pentane.
Collapse
Affiliation(s)
- Shubhrangshu Pandit
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Balázs Hornung
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Greg T Dunning
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Thomas J Preston
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Kristian Brazener
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
3
|
WANG YANHUA, PENG MIN, TONG JIANYING, WANG YULIANG. Influence of collision energy and vibrational excitation on the dynamics for the H+HBr→H2+Br reaction. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0912-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Shi Y, Kamasah A, Joalland B, Suits AG. Crossed-beam DC slice imaging of fluorine atom reactions with linear alkanes. J Chem Phys 2015; 142:184309. [PMID: 25978893 DOI: 10.1063/1.4919099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the reaction dynamics of F atom with selected alkanes studied by crossed beam scattering with DC slice ion imaging. The target alkanes are propane, n-butane, and n-pentane. The product alkyl radicals are probed by 157 nm single photon ionization following reaction at a collision energy of ∼10 kcal mol(-1). The analyzed data are compared with the corresponding theoretical studies. Reduced translational energy distributions for each system show similar trends with little of the reaction exoergicity appearing in translation. However, the pentane reaction shows a somewhat smaller fraction of available energy in translation than the other two, suggesting greater energy channeled into pentyl internal degrees of freedom. The center-of-mass angular distributions all show backscattering as well as sharp forward scattering that decreases in relative intensity with the size of the molecule. Possible reasons for these trends are discussed.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - Alexander Kamasah
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - Baptiste Joalland
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | - Arthur G Suits
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| |
Collapse
|
5
|
Preston TJ, Dunning GT, Orr-Ewing AJ, Vázquez SA. Direct and Indirect Hydrogen Abstraction in Cl + Alkene Reactions. J Phys Chem A 2014; 118:5595-607. [DOI: 10.1021/jp5042734] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas J. Preston
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Greg T. Dunning
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Andrew J. Orr-Ewing
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Saulo A. Vázquez
- Departamento de Química
Física and Centro Singular de Investigación Química
Biológica y Materiales Moleculares, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| |
Collapse
|
6
|
Duan ZX, Li WL, Xu WW, Lv SJ. Quasiclassical dynamics for the H + HS abstraction and exchange reactions on the 3A″ and the 3A′ states. J Chem Phys 2013; 139:094307. [DOI: 10.1063/1.4816663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
FU BINA, ZHOU YONG, ZHANG DONGH. A STATE-TO-STATE QUANTUM DYNAMICAL STUDY OF THE H + HBr REACTION. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633608004209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The time-dependent wave packet method was used to calculate the state-to-state differential cross sections for abstraction and exchange processes in the title reaction on the Kurosaki–Takayanagi potential energy surface [Kurosaki Y, Takayanagi T, J Chem Phys119:7838, 2003], with the reactant HBr initially in the ground rovibrational state. It is found that the trend in the product distributions is similar for abstraction and exchange processes, but the differential cross sections are very different. For the exchange reaction, the product is mainly scattered in the backward hemisphere for collision energy up to 2.0 eV, although forward scattering gradually shows up in high collision energies. While for abstraction reaction, the differential cross section changes substantially with the collision energy, moving from predominantly backward peaked at low collision energy to predominantly forward peaked at high collision energy. The rovibrational state resolved differential cross section at collision energy of 2.0 eV exhibits two peaks for the abstraction reaction, one is around the angle of 50°, and the other at 0°. It is found that the peaks around 50°, are below the corresponding maximum j' lines provided by the kinematic constraint model, while the forward-scattered peaks straddle both sides of the kinematic limit, and are likely contributed from both the direct and the migratory reaction mechanisms as proposed by Zare and coworkers.
Collapse
Affiliation(s)
- BINA FU
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - YONG ZHOU
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - DONG H. ZHANG
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
8
|
Estillore AD, Visger-Kiefer LM, Ghani TA, Suits AG. Dynamics of H and D abstraction in the reaction of Cl atom with butane-1,1,1,4,4,4-d6. Phys Chem Chem Phys 2011; 13:8433-40. [DOI: 10.1039/c1cp20137a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Rose RA, Greaves SJ, Orr-Ewing AJ. Velocity map imaging the dynamics of the reactions of Cl atoms with neopentane and tetramethylsilane. J Chem Phys 2010; 132:244312. [DOI: 10.1063/1.3447378] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Greaves SJ, Rose RA, Orr-Ewing AJ. Velocity map imaging of the dynamics of bimolecular chemical reactions. Phys Chem Chem Phys 2010; 12:9129-43. [PMID: 20448868 DOI: 10.1039/c001233e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The experimental technique of velocity map imaging (VMI) enables measurements to be made of the dynamics of chemical reactions that are providing unprecedented insights about reactive scattering. This perspective article illustrates how VMI, in combination with crossed-molecular beam, dual-beam or photo-initiated (Photoloc) methods, can reveal correlated information on the vibrational quantum states populated in the two products of a reaction, and the angular scattering of products (the differential cross section) formed in specific rotational and vibrational levels. Reactions studied by VMI techniques are being extended to those of polyatomic molecules or radicals, and of molecular ions. Subtle quantum-mechanical effects in bimolecular reactions can provide distinct signatures in the velocity map images, and are exemplified here by non-adiabatic dynamics on coupled potential energy surfaces, and by experimental evidence for scattering resonances.
Collapse
Affiliation(s)
- Stuart J Greaves
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | | | | |
Collapse
|
11
|
Zhang W, Cong S, Zhang C, Xu X, Chen M. Theoretical Study of Dynamics for the Abstraction Reaction H′ + HBr(v=0, j=0) → H′H + Br. J Phys Chem A 2009; 113:4192-7. [DOI: 10.1021/jp8105716] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenqin Zhang
- School of Physics and Optoelectronic Technology, School of Chemical Engineering, College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Shulin Cong
- School of Physics and Optoelectronic Technology, School of Chemical Engineering, College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Cuihua Zhang
- School of Physics and Optoelectronic Technology, School of Chemical Engineering, College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xuesong Xu
- School of Physics and Optoelectronic Technology, School of Chemical Engineering, College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Maodu Chen
- School of Physics and Optoelectronic Technology, School of Chemical Engineering, College of Advanced Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
12
|
McCaffery AJ. The remarkable influence of an “insignificant” quantity: How recoil orbital angular momentum determines product j distributions and (v;j) correlation in H+LH reactions. J Chem Phys 2008; 129:224303. [DOI: 10.1063/1.3029665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Coppage S, Matei P, Stewart B. Absolute level-resolved reactive and inelastic rate constants in Li+Li2*. J Chem Phys 2008; 128:241103. [PMID: 18601310 DOI: 10.1063/1.2951992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have used nuclear parity-changing collisions to obtain absolute level-to-level rate constants for reactive scattering in a triatomic system with identical nuclei. We have determined rate constants for the system (7)Li(2) (*)(A (1)Sigma(u) (+))(v(i)=2,j(i)=19)+(7)Li-->(7)Li+(7)Li(2) (*)(A (1)Sigma(u) (+))(v(f),j(f)), from laser-induced fluorescence spectra of lithium vapor in a heat pipe oven. Parity-preserving collisions yielded measurements of absolute rotationally and vibrationally inelastic rate constants as well. We compare the reactive rate constants with statistical prior distributions and the inelastic results with previously measured results on the Ne+(7)Li(2) (*) system.
Collapse
Affiliation(s)
- Steven Coppage
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | |
Collapse
|
14
|
Retail B, Rose RA, Pearce JK, Greaves SJ, Orr-Ewing AJ. The dynamics of reaction of Cl atoms with tetramethylsilane. Phys Chem Chem Phys 2008; 10:1675-80. [DOI: 10.1039/b716512a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
|
16
|
Retail B, Greaves SJ, Pearce JK, Rose RA, Orr-Ewing AJ. Imaging the nonadiabatic dynamics of the CH3 + HCl reaction. Phys Chem Chem Phys 2007; 9:3261-7. [PMID: 17579734 DOI: 10.1039/b704463a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LAB-frame velocity distributions of Cl-atoms produced in the photoinitiated reaction of CH(3) radicals with HCl have been measured for both the ground Cl ((2)P(3/2)) and excited Cl* ((2)P(1/2)) spin-orbit states using a DC slice velocity-map ion imaging technique. The similarity of these distributions, as well as the average internal excitation of methane co-products for both Cl and Cl* pathways, suggest that all the reactive flux proceeds through the same transition state on the ground potential energy surface (PES) and that the couplings which promote nonadiabatic transitions to the excited PES correlating to Cl* occur later in the exit channel, beyond the TS region. The nature of these couplings is discussed in light of initial vibrational excitation of CH(3) radicals as well as previously reported nonadiabatic reactivity in other polyatomic molecule reactions. Furthermore, the scattering of the reaction products, derived using the photoloc method, suggests that at the high collision energy of our experiment (E(coll) = 22.3 kcal mol(-1)), large impact parameter collisions are favoured with a reduced kinematic constraint on the internal excitation of the methane co-product.
Collapse
Affiliation(s)
- Bertrand Retail
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, UKBS8 1TS
| | | | | | | | | |
Collapse
|
17
|
Teslja A, Valentini JJ. State-to-state reaction dynamics: A selective review. J Chem Phys 2006; 125:132304. [PMID: 17029423 DOI: 10.1063/1.2354466] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A selective review of state-to-state reaction dynamics experiments is presented. The review focuses on three classes of reactions that exemplify the rich history and illustrate the current state of the art in such work. These three reactions are (1) the hydrogen exchange reaction, H+H2-->H2+H and its isotopomers; (2) the H+RH-->H2+R reactions, where RH is an alkane, beginning with H+CH4-->H2+CH3 and extending to much larger alkanes; and (3) the Cl+RH-->HCl+R reactions, principally Cl+CH4-->HCl+CH3. We describe the experiments, discuss their results, present comparisons with theory, and introduce heuristic models.
Collapse
Affiliation(s)
- Alexey Teslja
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
18
|
Lahankar SA, Chambreau SD, Townsend D, Suits F, Farnum J, Zhang X, Bowman JM, Suits AG. The roaming atom pathway in formaldehyde decomposition. J Chem Phys 2006; 125:44303. [PMID: 16942138 DOI: 10.1063/1.2202241] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a detailed experimental and theoretical investigation of formaldehyde photodissociation to H(2) and CO following excitation to the 2(1)4(1) and 2(1)4(3) transitions in S(1). The CO velocity distributions were obtained using dc slice imaging of single CO rotational states (v=0, j(CO)=5-45). These high-resolution measurements reveal the correlated internal state distribution in the H(2) cofragments. The results show that rotationally hot CO (j(CO) approximately 45) is produced in conjunction with vibrationally "cold" H(2) fragments (v=0-5): these products are formed through the well-known skewed transition state and described in detail in the accompanying paper. After excitation of formaldehyde above the threshold for the radical channel (H(2)CO-->H+HCO) we also find formation of rotationally cold CO (j(CO)=5-28) correlated to highly vibrationally excited H(2) (v=6-8). These products are formed through a novel mechanism that involves near dissociation followed by intramolecular H abstraction [D. Townsend et al., Science 306, 1158 (2004)], and that avoids the region of the transition state entirely. The dynamics of this "roaming" mechanism are the focus of this paper. The correlations between the vibrational states of H(2) and rotational states of CO formed following excitation on the 2(1)4(3) transition allow us to determine the relative contribution to molecular products from the roaming atom channel versus the conventional molecular channel.
Collapse
Affiliation(s)
- Sridhar A Lahankar
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Li W, Huang C, Patel M, Wilson D, Suits A. State-resolved reactive scattering by slice imaging: A new view of the Cl+C2H6 reaction. J Chem Phys 2006; 124:11102. [PMID: 16409017 DOI: 10.1063/1.2150434] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present state-resolved crossed beam scattering results for the reaction Cl+C2H6-->HCl+C2H5, obtained using direct current slice imaging. The HCl (v=0,J=2) image, recorded at a collision energy of 6.7+/-0.6 kcalmol, shows strongly coupled angular and translational energy distributions revealing features of the reaction not seen in previous studies. The overall distribution is mainly forward scattered with respect to the Cl beam, with a translational energy distribution peaking near the collision energy. However, there is a substantial backscattered contribution that is very different. It shows a sharp peak at 8.0 kcalmol, but extends to much lower energy, implying substantial internal excitation in the ethyl radical coproduct. These results provide new insight into the reaction, and they are considered in terms of alternative models of the dynamics. This work represents the first genuine crossed-beam study in which a product other than the methyl radical was detected with quantum state specificity, showing the promise of the approach generally for high resolution state-resolved reactive scattering.
Collapse
Affiliation(s)
- Wen Li
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11790 and Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
20
|
Murray C, Pearce JK, Rudić S, Retail B, Orr-Ewing AJ. Stereodynamics of Chlorine Atom Reactions with Organic Molecules. J Phys Chem A 2005; 109:11093-102. [PMID: 16331891 DOI: 10.1021/jp054627l] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of recent experimental and computational studies has explored how the dynamics of hydrogen abstraction from organic molecules are affected by the presence of functional groups in the molecule and by basic structural motifs such as strained ring systems. Comparisons drawn between reactions of Cl atoms with alkanes such as ethane, Cl + CH3CH3--> HCl + CH3CH2, which serve as benchmark systems, and with functionalized molecules such as alcohols, amines, and alkyl halides, Cl + CH3X --> HCl + CH2X (X = OH, NH2, halogen, etc.) expose a wealth of mechanistic detail. Although the scattering dynamics, as revealed from measured angular distributions of the velocities of the HCl with quantum-state resolution, show many similarities, much-enhanced rotational excitation of the HCl products is observed from reactions of the functionalized molecules. The degree of rotational excitation of the HCl correlates with the dipole moment of the CH2X radical and is thus attributed, at least in part, to post-transition-state dipole-dipole interactions between the separating, polar reaction products. This interpretation is supported by direct dynamics trajectories computed on-the-fly, and the HCl rotation is thus argued to serve as an in situ probe of the angular anisotropy of the reaction potential energy surface in the post-transition-state region. Comparisons between the dynamics of reactions of dimethyl ether and the three- and four-membered-ring compounds oxirane (c-C2H4O) and oxetane (c-C3H6O) raise questions about the role of reorientation of the reaction products on a time scale commensurate with their separation. The shapes and structures of polyatomic molecules are thus demonstrated to have important consequences for the stereodynamics of these direct abstraction reactions.
Collapse
Affiliation(s)
- Craig Murray
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | | | | | | | | |
Collapse
|
21
|
Shuman NS, Mihok M, Fistik M, Valentini JJ. Quasiclassical trajectory calculations to evaluate a kinematic constraint on internal energy in suprathreshold collision energy abstraction reactions. J Chem Phys 2005; 123:074312. [PMID: 16229575 DOI: 10.1063/1.1990122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Experimentally observed product quantum state distributions across a wide range of abstraction reactions at suprathreshold collision energies have shown a strong bias against product internal energy. Only a fraction, sometimes quite a small fraction, of the energetically accessible product quantum states are populated. Picconatto et al. [J. Chem. Phys. 114, 1663 (2001)] noted a simple mathematical relationship between the highest-energy rovibrational states observed and the kinematics of the reaction system. They proposed a reaction model based on reaction kinematics that quantitatively explains this behavior. The model is in excellent agreement with measured quantum state distributions. The assumptions of the model invoke detailed characteristics of reactive trajectories at suprathreshold collision energies. Here we test those assumptions using quasiclassical trajectory calculations for the abstraction reactions H+HCl-->H2+Cl, D+HCl-->HD+Cl, and H+DCl-->HD+Cl. Trajectories were run on a potential-energy surface calculated with a London-Eyring-Polyani-Sato function with a localized 3-center term (LEPS-3C) previously shown to accurately reproduce experimentally observed product state distributions for the H+HCl abstraction reaction. The trajectories sample collision energies near threshold and also substantially above it. Although the trajectories demonstrate some aspects of the model, they show that it is not valid. However, the inadequacy of the proposed model does not invalidate the apparent kinematic basis of the observed energy constraint. The present results show that there must be some other molecular behavior rooted in the reaction kinematics that is the explanation and the source of the constraint.
Collapse
Affiliation(s)
- Nicholas S Shuman
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
22
|
Koszinowski K, Goldberg NT, Pomerantz AE, Zare RN, Juanes-Marcos JC, Althorpe SC. Collision-energy dependence of HD(ν′=1,j′) product rotational distributions for the H+D2 reaction. J Chem Phys 2005; 123:054306. [PMID: 16108638 DOI: 10.1063/1.1978871] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Product rotational distributions for the reaction H + D2 --> HD(nu'=1,j') + D have been measured for 16 collision energies in the range of 1.43 < or = E(coll) < or = 2.55 eV. Time-dependent quantum-mechanical calculations agree well in general with the experimental results, but they consistently yield slightly colder distributions. In terms of the average energy channeled into rotation, the differences between experiment and theory amount to approximately 10% for all collision energies sampled. No peculiarity is found for E(coll)=2.55 eV at which the system has sufficient energy to access the first HD2 electronically excited state.
Collapse
Affiliation(s)
- Konrad Koszinowski
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | | | | | | | |
Collapse
|
23
|
Murray C, Orr-Ewing * AJ. The dynamics of chlorine-atom reactions with polyatomic organic molecules. INT REV PHYS CHEM 2004. [DOI: 10.1080/01442350412331329166] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Bechtel HA, Camden JP, Zare RN. State-to-state dynamics of the Cl+CH3OH→HCl+CH2OH reaction. J Chem Phys 2004; 120:4231-9. [PMID: 15268590 DOI: 10.1063/1.1644797] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular chlorine, methanol, and helium are co-expanded into a vacuum chamber using a custom designed "late-mixing" nozzle. The title reaction is initiated by photolysis of Cl2 at 355 nm, which generates monoenergetic Cl atoms that react with CH3OH at a collision energy of 1960 +/- 170 cm(-1) (0.24 +/- 0.02 eV). Rovibrational state distributions of the nascent HCl products are obtained via 2 + 1 resonance enhanced multiphoton ionization, center-of-mass scattering distributions are measured by the core-extraction technique, and the average internal energy of the CH3OH co-products is deduced by measuring the spatial anisotropy of the HCl products. The majority (84 +/- 7%) of the HCl reaction products are formed in HCl(v = 0) with an average rotational energy of [Erot] = 390 +/- 70 cm(-1). The remaining 16 +/- 7% are formed in HCl(v = 1) and have an average rotational energy of [Erot] = 190 +/- 30 cm(-1). The HCl(v = 1) products are primarily forward scattered, and they are formed in coincidence with CH2OH products that have little internal energy. In contrast, the HCl(v = 0) products are formed in coincidence with CH2OH products that have significant internal energy. These results indicate that two or more different mechanisms are responsible for the dynamics in the Cl + CH3OH reaction. We suggest that (1) the HCl(v = 1) products are formed primarily from collisions at high impact parameter via a stripping mechanism in which the CH2OH co-products act as spectators, and (2) the HCl(v = 0) products are formed from collisions over a wide range of impact parameters, resulting in both a stripping mechanism and a rebound mechanism in which the CH2OH co-products are active participants. In all cases, the reaction of fast Cl atoms with CH3OH is with the hydrogen atoms on the methyl group, not the hydrogen on the hydroxyl group.
Collapse
Affiliation(s)
- Hans A Bechtel
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | |
Collapse
|
25
|
Pomerantz AE, Ausfelder F, Zare RN, Althorpe SC, Aoiz FJ, Banares L, Castillo JF. Disagreement between theory and experiment in the simplest chemical reaction: Collision energy dependent rotational distributions for H+D2→HD(ν′=3,j′)+D. J Chem Phys 2004; 120:3244-54. [PMID: 15268478 DOI: 10.1063/1.1641008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present experimental rotational distributions for the reaction H + D2 --> HD(nu' = 3,j') + D at eight different collision energies between 1.49 and 1.85 eV. We combine a previous measurement of the state-resolved excitation function for this reaction [Ayers et al., J. Chem. Phys. 119, 4662 (2003)] with the current data to produce a map of the relative reactive cross section as a function of both collision energy and rotational quantum number (an E-j' plot). To compare with the experimental data, we also present E-j' plots resulting from both time-dependent and time-independent quantum mechanical calculations carried out on the BKMP2 surface. The two calculations agree well with each other, but they produce rotational distributions significantly colder than the experiment, with the difference being more pronounced at higher collision energies. Disagreement between theory and experiment might be regarded as surprising considering the simplicity of this system; potential causes of this discrepancy are discussed.
Collapse
Affiliation(s)
- Andrew E Pomerantz
- Department of Chemistry, Stanford University, Stanford, California 94305-5080 USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Bechtel HA, Kim ZH, Camden JP, Zare RN. Bond and mode selectivity in the reaction of atomic chlorine with vibrationally excited CH2D2. J Chem Phys 2004; 120:791-9. [PMID: 15267915 DOI: 10.1063/1.1630961] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The title reaction is investigated by co-expanding a mixture of Cl2 and CH2D2 into a vacuum chamber and initiating the reaction by photolyzing Cl2 with linearly polarized 355 nm light. Excitation of the first C-H overtone of CH2D2 leads to a preference for hydrogen abstraction over deuterium abstraction by at least a factor of 20, whereas excitation of the first C-D overtone of CH2D2 reverses this preference by at least a factor of 10. Reactions with CH2D2 prepared in a local mode containing two quanta in one C-H oscillator /2000>- or in a local mode containing one quantum each in two C-H oscillators /1100> lead to products with significantly different rotational, vibrational, and angular distributions, although the vibrational energy for each mode is nearly identical. The Cl+CH2D2/2000>- reaction yields methyl radical products primarily in their ground state, whereas the Cl+CH2D2/1100> reaction yields methyl radical products that are C-H stretch excited. The HCl(v=1) rotational distribution from the Cl+CH2D2/2000>- reaction is significantly hotter than the HCl(v=1) rotational distribution from the Cl+CH2D2/1100> reaction, and the HCl(v=1) differential cross-section (DCS) of the Cl+CH2D2/2000>- reaction is more broadly side scattered than the HCl(v=1) DCS of the Cl+CH2D2/1100> reaction. The results can be explained by a simple spectator model and by noting that the /2000>- mode leads to a wider cone of acceptance for the reaction than the /1100> mode. These measurements represent the first example of mode selectivity observed in a differential cross section, and they demonstrate that vibrational excitation can be used to direct the reaction pathway of the Cl+CH2D2 reaction.
Collapse
Affiliation(s)
- Hans A Bechtel
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | | | |
Collapse
|
27
|
Kim ZH, Bechtel HA, Zare RN. Channel-specific angular distributions of HCl and CH3 products from the reaction of atomic chlorine with stretch-excited methane. J Chem Phys 2002. [DOI: 10.1063/1.1493192] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Teule JM, Janssen MHM, Stolte S, Bulthuis J. Laser-induced fluorescence studies of excited Sr reactions. III. Sr(3P1)+CHF=CH2, CF2=CH2, CHF=CHF, and C6H5F. J Chem Phys 2002. [DOI: 10.1063/1.1458242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
State-to-state dynamics of H+c-RH→H2(v′,j′)+c-R reactions: the influence of reactant stereochemistry. Chem Phys Lett 2002. [DOI: 10.1016/s0009-2614(02)00028-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Srivastava A, Picconatto CA, Valentini JJ. State-to-state dynamics of the H+c-C6H12→H2(v′,j′)+c-C6H11 reaction. J Chem Phys 2001. [DOI: 10.1063/1.1386651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Picconatto CA, Srivastava A, Valentini JJ. State-to-state dynamics of the H+CD3(CH2)4CD3→H2+CD3((CH2)3CH)CD3 reaction: Dynamics of abstraction of secondary H in linear alkanes. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)00412-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Picconatto CA, Srivastava A, Valentini JJ. The H+n-C5H12/n-C6H14→H2(v′,j′)+C5H11/C6H13 reactions: State-to-state dynamics and models of energy disposal. J Chem Phys 2001. [DOI: 10.1063/1.1349089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|