1
|
Weike N, Eisfeld W. The effective relativistic coupling by asymptotic representation approach for molecules with multiple relativistic atoms. J Chem Phys 2024; 160:064104. [PMID: 38341788 DOI: 10.1063/5.0191529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 02/13/2024] Open
Abstract
The Effective Relativistic Coupling by Asymptotic Representation (ERCAR) approach is a method to generate fully coupled diabatic potential energy surfaces (PESs) including relativistic effects, especially spin-orbit coupling. The spin-orbit coupling of a full molecule is determined only by the atomic states of selected relativistically treated atoms. The full molecular coupling effect is obtained by a diabatization with respect to asymptotic states, resulting in the correct geometry dependence of the spin-orbit effect. The ERCAR approach has been developed over the last decade and initially only for molecules with a single relativistic atom. This work presents its extension to molecules with more than a single relativistic atom using the iodine molecule as a proof-of-principle example. The theory for the general multiple atomic ERCAR approach is given. In this case, the diabatic basis is defined at the asymptote where all relativistic atoms are separated from the remaining molecular fragment. The effective spin-orbit operator is then a sum of spin-orbit operators acting on isolated relativistic atoms. PESs for the iodine molecule are developed within the new approach and it is shown that the resulting fine structure states are in good agreement with spin-orbit ab initio calculations.
Collapse
Affiliation(s)
- Nicole Weike
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Wolfgang Eisfeld
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| |
Collapse
|
2
|
Kochetov V, Ahsan MS, Hein D, Wilkinson I, Bokarev SI. Valence and Core Photoelectron Spectra of Aqueous I3- from Multi-Reference Quantum Chemistry. Molecules 2023; 28:5319. [PMID: 37513192 PMCID: PMC10383688 DOI: 10.3390/molecules28145319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The I3- molecule is known to undergo substantial structural reorganization upon solvation by a protic solvent, e.g., water. However, the details of this process are still controversially discussed in the literature. In the present study, we combined experimental and theoretical efforts to disentangle this controversy. The valence (5p), N4,5 (4d), and M4,5 (3d) edge photoelectron spectra were measured in an aqueous solution and computed using high-level multi-reference methods. Our previous publication mainly focused on obtaining reliable experimental evidence, whereas in the present article, we focused primarily on theoretical aspects. The complex electronic structure of I3- requires the inclusion of both static and dynamic correlation, e.g., via the multi-configurational perturbation theory treatment. However, the resulting photoelectron spectra appear to be very sensitive to problems with variational stability and intruder states. We attempted to obtain artifact-free spectra, allowing for a more reliable interpretation of experiments. Finally, we concluded that the 3d Photoelectron Spectrum (PES) is particularly informative, evidencing an almost linear structure with a smaller degree of bond asymmetry than previously reported.
Collapse
Affiliation(s)
- Vladislav Kochetov
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany
| | - Md Sabbir Ahsan
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
- Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Dennis Hein
- Operando Interfacial Photochemistry, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstrasse 15, D-12489 Berlin, Germany
| | - Iain Wilkinson
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Sergey I Bokarev
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany
- Chemistry Department, School of Natural Sciences, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching, Germany
| |
Collapse
|
3
|
de Macedo LGM, de Castro Vieira YC, de Oliveira RM, Gargano R. Relativistic four-component MRCISD+Q calculations of the six lowest valence states of molecular [Formula: see text] anion including breit interactions. J Mol Model 2023; 29:207. [PMID: 37310506 DOI: 10.1007/s00894-023-05564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 06/14/2023]
Abstract
CONTEXT AND RESULTS This study aimed to obtain potential energy curves within a multireference 4-component relativistic method and to present spectroscopic constants (R[Formula: see text],[Formula: see text],[Formula: see text]x[Formula: see text],[Formula: see text]y[Formula: see text], D[Formula: see text], D[Formula: see text], B[Formula: see text],[Formula: see text],[Formula: see text],[Formula: see text] ), accurate extended Rydberg analytical form, and rovibrational levels for the 6 low-lying states of the I[Formula: see text] anion. For these states, some spectroscopic constants, rovibrational levels, and an accurate analytical form are presented for the first time in literature, and they are of interest for femtosecond and dynamics experiments of I[Formula: see text] as well as for electron attachment of I[Formula: see text]. This study suggests that the inclusion of relativistic and correlation effects treated at the MRCISD+Q level is needed to obtain reliable results, specially for D[Formula: see text]. COMPUTATIONAL AND THEORETICAL TECHNIQUES The potential energy curves of the ground and the excited states of the molecular iodine anion (I[Formula: see text]) were investigated at multireference configuration interaction (MRCISD) with Davidson size-extensivity correction (denoted as +Q) within a fully relativistic four-component relativistic framework including Breit interaction.
Collapse
Affiliation(s)
- Luiz Guilherme Machado de Macedo
- Campus Centro Oeste Dona Lindu, Universidade Federal de São João Del Rei, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brasil.
| | - Yasmin Celen de Castro Vieira
- Campus Centro Oeste Dona Lindu, Universidade Federal de São João Del Rei, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Rhuiago Mendes de Oliveira
- Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Av. João Alberto, 1840, Bacabal, 65700-000, Maranhão, Brasil
| | - Ricardo Gargano
- Instituto de Física, Universidade de Brasília, P.O. Box 04455, Brasília, 70919-970, Distrito Federal, Brasil
| |
Collapse
|
4
|
Heo J, Kim JG, Choi EH, Ki H, Ahn DS, Kim J, Lee S, Ihee H. Determining the charge distribution and the direction of bond cleavage with femtosecond anisotropic x-ray liquidography. Nat Commun 2022; 13:522. [PMID: 35082327 PMCID: PMC8792042 DOI: 10.1038/s41467-022-28168-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Energy, structure, and charge are fundamental quantities characterizing a molecule. Whereas the energy flow and structure change in chemical reactions are experimentally characterized, determining the atomic charges of a molecule in solution has been elusive, even for a triatomic molecule such as triiodide ion, I3-. Moreover, it remains to be answered how the charge distribution is coupled to the molecular geometry; which I-I bond, if two I-I bonds are unequal, dissociates depending on the electronic state. Here, femtosecond anisotropic x-ray solution scattering allows us to provide the following answers in addition to the overall rich structural dynamics. The analysis unravels that the negative charge of I3- is highly localized on the terminal iodine atom forming the longer bond with the central iodine atom, and the shorter I-I bond dissociates in the excited state, whereas the longer one in the ground state. We anticipate that this work may open a new avenue for studying the atomic charge distribution of molecules in solution and taking advantage of orientational information in anisotropic scattering data for solution-phase structural dynamics.
Collapse
Affiliation(s)
- Jun Heo
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Eun Hyuk Choi
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hosung Ki
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Doo-Sik Ahn
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jungmin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seonggon Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Choi EH, Lee Y, Heo J, Ihee H. Reaction dynamics studied via femtosecond X-ray liquidography at X-ray free-electron lasers. Chem Sci 2022; 13:8457-8490. [PMID: 35974755 PMCID: PMC9337737 DOI: 10.1039/d2sc00502f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
X-ray free-electron lasers (XFELs) provide femtosecond X-ray pulses suitable for pump–probe time-resolved studies with a femtosecond time resolution. Since the advent of the first XFEL in 2009, recent years have witnessed a great number of applications with various pump–probe techniques at XFELs. Among these, time-resolved X-ray liquidography (TRXL) is a powerful method for visualizing structural dynamics in the liquid solution phase. Here, we classify various chemical and biological molecular systems studied via femtosecond TRXL (fs-TRXL) at XFELs, depending on the focus of the studied process, into (i) bond cleavage and formation, (ii) charge distribution and electron transfer, (iii) orientational dynamics, (iv) solvation dynamics, (v) coherent nuclear wavepacket dynamics, and (vi) protein structural dynamics, and provide a brief review on each category. We also lay out a plausible roadmap for future fs-TRXL studies for areas that have not been explored yet. Femtosecond X-ray liquidography using X-ray free-electron lasers (XFELs) visualizes various aspects of reaction dynamics.![]()
Collapse
Affiliation(s)
- Eun Hyuk Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jun Heo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
6
|
Chan B. Accurate Thermochemistry for Main-Group Elements up to Xenon with the W n-P34 Series of Composite Methods. J Chem Theory Comput 2021; 17:5704-5714. [PMID: 34410730 DOI: 10.1021/acs.jctc.1c00598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the present study, we introduce the accurate Wn-P34 quantum chemistry composite methods with applicability to heavy p-block elements up to xenon. For a set of thermochemical properties for prototypical third- and fourth-row species and for a diverse set of small light-main-group species, they show accuracies of ∼3 kJ mol-1 or better. Overall, the Wn-P34 methods are comparable in accuracy to Wn, with a widened applicability to heavier elements. We have used Wn-P34 to compile the P34 set of accurate thermochemical values for heavy p-block species, and we have applied this set to assess a wide range of lower-cost methods. The results of our assessment show that the G4(MP2)-XK composite method provides adequate treatments for these species, but several widely used double-hybrid density functional theory (DH-DFT) methods show uncharacteristically large deviations. In contrast, we find it presently surprising that some pure and hybrid DFT methods such as TPSS and SCANh perform quite well. We hope that our findings and new tools would facilitate the application of computational chemistry for heavy elements, of which the properties are yet to be broadly explored.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
7
|
Ledbetter K, Biasin E, Nunes JPF, Centurion M, Gaffney KJ, Kozina M, Lin MF, Shen X, Yang J, Wang XJ, Wolf TJA, Cordones AA. Photodissociation of aqueous I 3 - observed with liquid-phase ultrafast mega-electron-volt electron diffraction. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:064901. [PMID: 33415183 PMCID: PMC7771998 DOI: 10.1063/4.0000051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 05/26/2023]
Abstract
Developing femtosecond resolution methods for directly observing structural dynamics is critical to understanding complex photochemical reaction mechanisms in solution. We have used two recent developments, ultrafast mega-electron-volt electron sources and vacuum compatible sub-micron thick liquid sheet jets, to enable liquid-phase ultrafast electron diffraction (LUED). We have demonstrated the viability of LUED by investigating the photodissociation of tri-iodide initiated with a 400 nm laser pulse. This has enabled the average speed of the bond expansion to be measured during the first 750 fs of dissociation and the geminate recombination to be directly captured on the picosecond time scale.
Collapse
Affiliation(s)
| | - E. Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J. P. F. Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - M. Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - K. J. Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M. Kozina
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M.-F. Lin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - X. Shen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - X. J. Wang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T. J. A. Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A. A. Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
8
|
Gibbard JA, Castracane E, Continetti RE. Photoelectron-photofragment coincidence spectroscopy of the mixed trihalides. J Chem Phys 2020; 153:054304. [PMID: 32770881 DOI: 10.1063/5.0014253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photoelectron-photofragment coincidence (PPC) spectroscopy is used to study the photodetachment, photodissociation, and dissociative photodetachment (DPD) of I2Br-, IBr2 -, I2Cl-, and ICl2 - at 266 nm. The mixed trihalides are asymmetric analogs of the well-studied I3 - anion, with distinguishable dissociation asymptotes and the potential for selective bond breaking. The high beam energy PPC spectrometer used in this study couples an electrospray ionization source, a hexapole accumulation ion trap, and a linear accelerator to produce a 21 keV beam of a particular trihalide. Total, stable, and dissociative photoelectron spectra have been recorded for all the anions, except ICl2 - that does not photodetach at 266 nm. A bound ground state (X) is observed for all the anions, and a dissociative first excited (A) state is also seen for I2Br- and I2Cl- at low electron kinetic energies (eKE). A 258 nm photoelectron spectrum recorded for I2Br- and I2Cl- rules out autodetachment of a dipole-bound state as the origin of the low eKE feature. The threshold detachment energy (TDE) of I2X- to the X state of the radical is similar to I3 -, whereas the TDE to the radical A state increases with substitution of iodine for a lighter halogen. Two-body DPD is observed for I2Br- and I2Cl-, resulting in IBr/ICl + I + e-. For IBr2 - and ICl2 -, the charge symmetric three-body photodissociation of [Br-I-Br]- and [Cl-I-Cl]- is seen yielding Br + Br and Br + Br*, and Cl + Cl and Cl + Cl* neutral fragments. Evidence for the minimum energy anion structure is observed in all cases, where the iodine atom is located at the center of the trihalide.
Collapse
Affiliation(s)
- J A Gibbard
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0340, USA
| | - E Castracane
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0340, USA
| | - R E Continetti
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, California 92093-0340, USA
| |
Collapse
|
9
|
Gibbard JA, Continetti RE. Photoelectron-photofragment coincidence spectroscopy of the dissociative photodetachment of I 2- at 258 and 266 nm. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1626507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- J. A. Gibbard
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - R. E. Continetti
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| |
Collapse
|
10
|
Gibbard JA, Continetti RE. Photoelectron-photofragment coincidence studies of I 3- using an electrospray ionization source and a linear accelerator. Faraday Discuss 2019; 217:203-219. [PMID: 31012884 DOI: 10.1039/c8fd00216a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoelectron-photofragment coincidence (PPC) spectroscopy is used to examine the dissociative photodetachment (DPD) of I3-. The high beam energy PPC spectrometer for complex anions couples an electrospray ionization source, a hexapole accumulation ion trap and a linear accelerator to produce fast beams of I3- (M = 381 amu) anions, the heaviest system studied to date. Following photodetachment, the photoelectron and up to three photofragments are recorded in coincidence yielding a kinematically complete picture of the DPD dynamics at beam energies of 11 keV and 21 keV. Photodetachment leads to the production of stable I3, two-body DPD, as well as evidence for two- and three-body photodissociation. DPD is found to occur predominantly via the first excited A state, with some contributions from highly excited vibrational levels in the neutral ground state. With the ions thermalized to 298 K in the hexapole trap, there are significant contributions from vibrational hot bands. Three-body photodissociation at 4.66 eV is found to occur preferentially via a charge-symmetric process to form I + I- + I. In the future this method will be applied to other polyatomic systems with a large molecular mass, including multiply charged anions and complex clusters, in concert with a cryogenically cooled hexapole trap to reduce thermal effects.
Collapse
Affiliation(s)
- J A Gibbard
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr, La Jolla, Ca 92093-0340, USA.
| | - R E Continetti
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr, La Jolla, Ca 92093-0340, USA.
| |
Collapse
|
11
|
Tristant D, Puech P, Gerber IC. Theoretical study of polyiodide formation and stability on monolayer and bilayer graphene. Phys Chem Chem Phys 2015; 17:30045-51. [DOI: 10.1039/c5cp04594k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Insights of DFT calculations on the formation of polyiodide complexes and their thermal stability on graphene based nanostructures.
Collapse
Affiliation(s)
| | - Pascal Puech
- CEMES
- UPR 8011
- CNRS-Université de Toulouse
- 31055 Toulouse
- France
| | | |
Collapse
|
12
|
Chattopadhyay S, Mahapatra US, Chaudhuri RK. Dissociation of homonuclear diatomic halogens via multireference coupled cluster calculations. Mol Phys 2014. [DOI: 10.1080/00268976.2014.906675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Gomes ASP, Visscher L, Bolvin H, Saue T, Knecht S, Fleig T, Eliav E. The electronic structure of the triiodide ion from relativistic correlated calculations: A comparison of different methodologies. J Chem Phys 2010; 133:064305. [DOI: 10.1063/1.3474571] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Nishiyama Y, Terazima M, Kimura Y. Photo-dissociation and recombination of triiodide in room temperature ionic liquids. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.03.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
UV photolysis of I3- in solution – Multiple product channels detected by transient hyperspectral probing. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Kerenskaya G, Goldschleger IU, Apkarian VA, Fleischer E, Janda KC. Spectroscopic Signatures of Halogens in Clathrate Hydrate Cages. 2. Iodine. J Phys Chem A 2007; 111:10969-76. [DOI: 10.1021/jp0747306] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Galina Kerenskaya
- Department of Chemistry, University of California−Irvine, Irvine, California 92697
| | - Ilya U. Goldschleger
- Department of Chemistry, University of California−Irvine, Irvine, California 92697
| | - V. Ara Apkarian
- Department of Chemistry, University of California−Irvine, Irvine, California 92697
| | - Everly Fleischer
- Department of Chemistry, University of California−Irvine, Irvine, California 92697
| | - Kenneth C. Janda
- Department of Chemistry, University of California−Irvine, Irvine, California 92697
| |
Collapse
|
17
|
Nakanishi R, Saitou N, Ohno T, Kowashi S, Yabushita S, Nagata T. Photodissociation of gas-phase I3−: Comprehensive understanding of nonadiabatic dissociation dynamics. J Chem Phys 2007; 126:204311. [PMID: 17552766 DOI: 10.1063/1.2736691] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Photodissociation of the gas-phase tri-iodide anion, I3-, was investigated using photofragment time of flight (TOF) mass spectrometry combined with the core extraction method. An analysis of the TOF profiles provided the kinetic energy and angular distributions of photofragment ions and photoneutrals, from which the photoproduct branching fractions were determined in the excitation energy range of 3.26-4.27 eV. The measurement has revealed that (1) in the entire energy range investigated, three-body dissociation occurs preferentially as the "charge-asymmetric" process I-(1S)+I(2P3/2)+I(2P3/2) with the yield of approximately 30%-40%, where the excess charge is localized on the end atoms of the dissociating I3-, and that (2) two-body dissociation via the 3Piu(0u+)<--1Sigmag+(0g+) excitation proceeds as I-(1S)+I2(X 1Sigmag+)/I2(A 3Pi1u) or I(2P3/2)+I2-(X 2Sigmau+) with the yield of approximately 60%, while that via the 1Sigmau+(0u+)<--1Sigmag+(0g+) excitation alternatively as I*(2P1/2)+I2-(X 2Sigmau+) or I-(1S)+I2(B 3Piu) with the yield of approximately 60%. Ab initio calculations including spin-orbit configuration interactions were also performed to gain precise information on the potential energy surfaces relevant to the I3- photodissociation. The calculations have shown the presence of conical intersections and avoided crossings located along the symmetric stretch coordinate near the ground-state equilibrium geometry of I3-, which play key roles for the two-body and the three-body product branching. The nonadiabatic nature of the I3- photodissociation dynamics is discussed by combining the experimental findings and the ab initio results.
Collapse
Affiliation(s)
- Ryuzo Nakanishi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Parsons BF, Sheehan SM, Kautzman KE, Yen TA, Neumark DM. Photoelectron imaging of I2− at 5.826eV. J Chem Phys 2006; 125:244301. [PMID: 17199345 DOI: 10.1063/1.2363990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We report the anion photoelectron spectrum of I2- taken at 5.826 eV detachment energy using velocity mapped imaging. The photoelectron spectrum exhibits bands resulting from transitions to the bound regions of the X 1Sigmag+(0g+), A' 3Piu(2u), A 3Piu(1u), and B 3Piu(0u+) electronic states as well as bands resulting from transitions to the repulsive regions of several I2 electronic states: the B' 3Piu(0u-), B" 1Piu(1u), 3Pig(2g), a 3Pig(1g), 3Pig(0g-), and C 3Sigmau+(1u) states. We simulate the photoelectron spectrum using literature parameters for the I2- and I2 ground and excited states. The photoelectron spectrum includes bands resulting from transitions to several high-lying excited states of I2 that have not been seen experimentally: 3Pig(0g-), 1Pig3(1g), 1 3Sigmag-3(0g+), and the 1Sigmag-3(0u-) states of I2. Finally, the photoelectron spectrum at 5.826 eV allows for the correction of a previous misassignment for the vertical detachment energy of the I2 B 3Piu(0u+) state.
Collapse
Affiliation(s)
- Bradley F Parsons
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-1460 and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
19
|
Liu CL, Hsu HC, Ni CK. Time-sliced ion imaging study of I2 and I2+ photolysis at 532 nm. Phys Chem Chem Phys 2005; 7:2151-5. [DOI: 10.1039/b501723h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Berry JF, Cotton FA, Lu T, Murillo CA, Roberts BK, Wang X. Molecular and Electronic Structures by Design: Tuning Symmetrical and Unsymmetrical Linear Trichromium Chains. J Am Chem Soc 2004; 126:7082-96. [PMID: 15174879 DOI: 10.1021/ja049055h] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The preparation, properties, and crystal structures of 12 trichromium extended metal atom chain (EMAC) compounds of the type Cr(3)(L)(4)X(2) (L = equatorial ligands dipyridylamide (dpa) or di-4,4'-ethyl-2,2'-pyridylamide (depa), and X = axial ligands, e.g., halide or pseudohalide ions) with large variations in metal-metal distances are reported here. These complexes, which belong to a broad class of fundamentally interesting trinuclear molecules over which the electrons may or may not be delocalized, pose significant theoretical and experimental challenges which are dealt with in this report. Complexes with strongly donating axial or equatorial ligands tend to favor a symmetrical (D(4)) molecular structure, while more weakly donating ligands give rise to unsymmetrical (C(4)) structures; the physical properties of these two classes of compounds are discussed fully, and important comparisons with a reported DFT model of the electronic structures of the compounds are made.
Collapse
Affiliation(s)
- John F Berry
- Department of Chemistry and Laboratory for Molecular Structure and Bonding, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012, USA
| | | | | | | | | | | |
Collapse
|
21
|
Hoops AA, Gascooke JR, Faulhaber AE, Kautzman KE, Neumark DM. Two- and three-body photodissociation of gas phase I3−. J Chem Phys 2004; 120:7901-9. [PMID: 15267705 DOI: 10.1063/1.1691017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photodissociation dynamics of I3- from 390 to 290 nm (3.18 to 4.28 eV) have been investigated using fast beam photofragment translational spectroscopy in which the products are detected and analyzed with coincidence imaging. At photon energies < or = 3.87 eV, two-body dissociation that generates I- + I2(A 3Pi1) and vibrationally excited I2- (X 2Sigmau+) + I(2P(3/2)) is observed, while at energies > or = 3.87 eV, I*(2P(1/2)) + I2- (X 2Sigmau+) is the primary two-body dissociation channel. In addition, three-body dissociation yielding I- +2I(2P(3/2)) photofragments is seen throughout the energy range probed; this is the dominant channel at all but the lowest photon energy. Analysis of the three-body dissociation events indicates that this channel results primarily from a synchronous concerted decay mechanism.
Collapse
Affiliation(s)
- Alexandra A Hoops
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
22
|
Zhu L, Takahashi K, Saeki M, Tsukuda T, Nagata T. Photodissociation of gas-phase I−3: product branching in the visible and UV regions. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)01288-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Visscher L, Eliav E, Kaldor U. Formulation and implementation of the relativistic Fock-space coupled cluster method for molecules. J Chem Phys 2001. [DOI: 10.1063/1.1415746] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Gershgoren E, Vala J, Kosloff R, Ruhman S. Impulsive Control of Ground Surface Dynamics of I3- in Solution. J Phys Chem A 2001. [DOI: 10.1021/jp0039518] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Erez Gershgoren
- Institute of Chemistry, The Hebrew University, Jerusalem, 91904 Israel
| | - J. Vala
- Institute of Chemistry, The Hebrew University, Jerusalem, 91904 Israel
| | - R. Kosloff
- Institute of Chemistry, The Hebrew University, Jerusalem, 91904 Israel
| | - S. Ruhman
- Institute of Chemistry, The Hebrew University, Jerusalem, 91904 Israel
| |
Collapse
|