Ammar A, Ménétrier M, Villesuzanne A, Matar S, Chevalier B, Etourneau J, Villeneuve G, Rodríguez-Carvajal J, Koo HJ, Smirnov AI, Whangbo MH. Investigation of the Electronic and Structural Properties of Potassium Hexaboride, KB6, by Transport, Magnetic Susceptibility, EPR, and NMR Measurements, Temperature-Dependent Crystal Structure Determination, and Electronic Band Structure Calculations.
Inorg Chem 2004;
43:4974-87. [PMID:
15285674 DOI:
10.1021/ic049444c]
[Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic and structural properties of potassium hexaboride, KB(6), were examined by transport, magnetic susceptibility, EPR, and NMR measurements, temperature-dependent crystal structure determination, and electronic band structure calculations. The valence bands of KB(6) are partially empty, but the electrical resistivity of KB(6) reveals that it is not a normal metal. The magnetic susceptibility as well as EPR and NMR measurements show the presence of localized electrons in KB(6). The EPR spectra of KB(6) have two peaks, a broad ( approximately 320 G) and a narrow (less than approximately 27 G) line width, and the temperature-dependence of the magnetic susceptibility of KB(6) exhibits a strong hysteresis below 70 K. The temperature-dependent crystal structure determination of KB(6) shows the occurrence of an unusual variation in the unit cell parameter hence supporting that the hysteresis of the magnetic susceptibility is a bulk phenomenon. The line width DeltaH(pp) of the broad EPR signal is independent of temperature and EPR frequency. This finding indicates that the line broadening results from the dipole-dipole interaction, and the spins responsible for the broad EPR peak has the average distance of approximately 1.0 nm. To explain these apparently puzzling properties, we examined a probable mechanism of electron localization in KB(6) and its implications.
Collapse