• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4606104)   Today's Articles (713)   Subscriber (49373)
For: Yanai T, Iikura H, Nakajima T, Ishikawa Y, Hirao K. A new implementation of four-component relativistic density functional method for heavy-atom polyatomic systems. J Chem Phys 2001. [DOI: 10.1063/1.1412252] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
De Santis M, Sorbelli D, Vallet V, Gomes ASP, Storchi L, Belpassi L. Frozen-Density Embedding for Including Environmental Effects in the Dirac-Kohn-Sham Theory: An Implementation Based on Density Fitting and Prototyping Techniques. J Chem Theory Comput 2022;18:5992-6009. [PMID: 36172757 PMCID: PMC9558305 DOI: 10.1021/acs.jctc.2c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
2
Zhang C, Cheng L. Atomic Mean-Field Approach within Exact Two-Component Theory Based on the Dirac-Coulomb-Breit Hamiltonian. J Phys Chem A 2022;126:4537-4553. [PMID: 35763592 DOI: 10.1021/acs.jpca.2c02181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
3
Cruz JC, Garza J, Yanai T, Hirata S. Stochastic evaluation of four-component relativistic second-order many-body perturbation energies: A potentially quadratic-scaling correlation method. J Chem Phys 2022;156:224102. [DOI: 10.1063/5.0091973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
4
Zhou C, Wu D, Gagliardi L, Truhlar DG. Calculation of the Zeeman Effect for Transition-Metal Complexes by Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2021;17:5050-5063. [PMID: 34338523 DOI: 10.1021/acs.jctc.1c00208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
5
Liu J, Cheng L. Relativistic coupled‐cluster and equation‐of‐motion coupled‐cluster methods. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
6
Paquier J, Giner E, Toulouse J. Relativistic short-range exchange energy functionals beyond the local-density approximation. J Chem Phys 2020;152:214106. [DOI: 10.1063/5.0004926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
7
Cheng L, Wang F, Stanton JF, Gauss J. Perturbative treatment of spin-orbit-coupling within spin-free exact two-component theory using equation-of-motion coupled-cluster methods. J Chem Phys 2018;148:044108. [DOI: 10.1063/1.5012041] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
8
Mussard B, Sharma S. One-Step Treatment of Spin–Orbit Coupling and Electron Correlation in Large Active Spaces. J Chem Theory Comput 2017;14:154-165. [DOI: 10.1021/acs.jctc.7b01019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
9
Cao Z, Wang F, Yang M. Coupled-cluster method for open-shell heavy-element systems with spin-orbit coupling. J Chem Phys 2017;146:134108. [DOI: 10.1063/1.4979491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
10
Lipparini F, Gauss J. Cost-Effective Treatment of Scalar Relativistic Effects for Multireference Systems: A CASSCF Implementation Based on the Spin-free Dirac–Coulomb Hamiltonian. J Chem Theory Comput 2016;12:4284-95. [DOI: 10.1021/acs.jctc.6b00609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
11
Rampino S, Belpassi L, Tarantelli F, Storchi L. Full Parallel Implementation of an All-Electron Four-Component Dirac–Kohn–Sham Program. J Chem Theory Comput 2014;10:3766-76. [DOI: 10.1021/ct500498m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
12
Hrdá M, Kulich T, Repiský M, Noga J, Malkina OL, Malkin VG. Implementation of the diagonalization-free algorithm in the self-consistent field procedure within the four-component relativistic scheme. J Comput Chem 2014;35:1725-37. [DOI: 10.1002/jcc.23674] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/22/2023]
13
NAKAJIMA T. The Douglas–Kroll Approach. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2014. [DOI: 10.2477/jccj.2013-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
14
Chalupský J, Yanai T. Flexible nuclear screening approximation to the two-electron spin–orbit coupling based on ab initio parameterization. J Chem Phys 2013;139:204106. [DOI: 10.1063/1.4832737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
15
Cuadrado R, Cerdá JI. Fully relativistic pseudopotential formalism under an atomic orbital basis: spin-orbit splittings and magnetic anisotropies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012;24:086005. [PMID: 22277796 DOI: 10.1088/0953-8984/24/8/086005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
16
NAKAJIMA TAKAHITO, TSUNEDA TAKAO, NAKANO HARUYUKI, HIRAO KIMIHIKO. RECENT ADVANCES IN ELECTRONIC STRUCTURE THEORY. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2012. [DOI: 10.1142/s0219633602000105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
17
Liu W, Wang F, Li L. The Beijing Density Functional (BDF) Program Package: Methodologies and Applications. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633603000471] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
18
Anderson JSM, Ayers PW. Quantum Theory of Atoms in Molecules: Results for the SR-ZORA Hamiltonian. J Phys Chem A 2011;115:13001-6. [DOI: 10.1021/jp204558n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
19
Cheng L, Gauss J. Analytical evaluation of first-order electrical properties based on the spin-free Dirac-Coulomb Hamiltonian. J Chem Phys 2011;134:244112. [DOI: 10.1063/1.3601056] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]  Open
20
Nakajima T, Hirao K. The Douglas–Kroll–Hess Approach. Chem Rev 2011;112:385-402. [DOI: 10.1021/cr200040s] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
21
Mizukami W, Nakajima T, Hirao K, Yanai T. A dual-level approach to four-component relativistic density-functional theory. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
22
Belpassi L, Storchi L, Quiney HM, Tarantelli F. Recent advances and perspectives in four-component Dirac–Kohn–Sham calculations. Phys Chem Chem Phys 2011;13:12368-94. [DOI: 10.1039/c1cp20569b] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
23
Nataraj HS, Kállay M, Visscher L. General implementation of the relativistic coupled-cluster method. J Chem Phys 2010;133:234109. [DOI: 10.1063/1.3518712] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
24
Storchi L, Belpassi L, Tarantelli F, Sgamellotti A, Quiney HM. An Efficient Parallel All-Electron Four-Component Dirac−Kohn−Sham Program Using a Distributed Matrix Approach. J Chem Theory Comput 2010;6:384-94. [DOI: 10.1021/ct900539m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
25
Four-Component Electronic Structure Methods. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2010. [DOI: 10.1007/978-1-4020-9975-5_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
26
van Wüllen C. Relativistic Density Functional Theory. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2010. [DOI: 10.1007/978-1-4020-9975-5_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
27
Belpassi L, Tarantelli F, Sgamellotti A, Quiney HM. Poisson-transformed density fitting in relativistic four-component Dirac–Kohn–Sham theory. J Chem Phys 2008;128:124108. [DOI: 10.1063/1.2868770] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
28
Hisashima TA, Matsushita T, Asada T, Koseki S, Toyota A. Tetra-hydrides of the third-row transition elements: spin–orbit coupling effects on geometrical deformation in WH4 and OsH4. Theor Chem Acc 2007. [DOI: 10.1007/s00214-007-0302-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
29
Tymczak CJ, Challacombe M. Linear scaling computation of the Fock matrix. VII. Periodic density functional theory at the Gamma point. J Chem Phys 2006;122:134102. [PMID: 15847450 DOI: 10.1063/1.1853374] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
30
Belpassi L, Tarantelli F, Sgamellotti A, Quiney HM. Electron density fitting for the Coulomb problem in relativistic density-functional theory. J Chem Phys 2006;124:124104. [PMID: 16599659 DOI: 10.1063/1.2179420] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
31
Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Theor Chem Acc 2005. [DOI: 10.1007/s00214-005-0681-9] [Citation(s) in RCA: 955] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
32
Belpassi L, Tarantelli F, Sgamellotti A, Quiney HM. Computational strategies for a four-component Dirac–Kohn–Sham program: Implementation and first applications. J Chem Phys 2005;122:184109. [PMID: 15918696 DOI: 10.1063/1.1897383] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
33
Benchmark four-component relativistic density functional calculations on Cu2, Ag2, and Au2. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2004.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
34
Abe M, Mori S, Nakajima T, Hirao K. Electronic structures of PtCu, PtAg, and PtAu molecules: a Dirac four-component relativistic study. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2004.09.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
35
Non-collinear and collinear four-component relativistic molecular density functional calculations. Chem Phys 2005. [DOI: 10.1016/j.chemphys.2004.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
36
Gao J, Liu W, Song B, Liu C. Time-dependent four-component relativistic density functional theory for excitation energies. J Chem Phys 2004;121:6658-66. [PMID: 15473721 DOI: 10.1063/1.1788655] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
37
Nakajima T, Hirao K. Pseudospectral approach to relativistic molecular theory. J Chem Phys 2004;121:3438-45. [PMID: 15303907 DOI: 10.1063/1.1775791] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
38
A four-index transformation in Dirac's four-component relativistic theory. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.02.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
39
Rösch N, Matveev A, Nasluzov VA, Neyman KM, Moskaleva L, Krüger S. Quantum chemistry with the Douglas-Kroll-Hess approach to relativistic density functional theory: Efficient methods for molecules and materials. THEORETICAL AND COMPUTATIONAL CHEMISTRY 2004. [DOI: 10.1016/s1380-7323(04)80038-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
40
Wang F, Li L. Numerical examination of performance of some exchange-correlation functionals for molecules containing heavy elements. J Comput Chem 2004;25:669-77. [PMID: 14978710 DOI: 10.1002/jcc.10421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
41
van Wüllen C. Relativistic Density Functional Calculations on Small Molecules. THEORETICAL AND COMPUTATIONAL CHEMISTRY 2004. [DOI: 10.1016/s1380-7323(04)80037-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
42
Nakajima T, Hirao K. Extended Douglas–Kroll transformations applied to the relativistic many-electron Hamiltonian. J Chem Phys 2003. [DOI: 10.1063/1.1594173] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
43
Relativistic Molecular Theory. B KOREAN CHEM SOC 2003. [DOI: 10.5012/bkcs.2003.24.6.809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
44
Fossgaard O, Gropen O, Valero MC, Saue T. On the performance of four-component relativistic density functional theory: Spectroscopic constants and dipole moments of the diatomics HX and XY (X,Y=F, Cl, Br, and I). J Chem Phys 2003. [DOI: 10.1063/1.1574317] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
45
Saue T, Jensen HJA. Linear response at the 4-component relativistic level: Application to the frequency-dependent dipole polarizabilities of the coinage metal dimers. J Chem Phys 2003. [DOI: 10.1063/1.1522407] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
46
UTChem — A Program for ab initio Quantum Chemistry. LECTURE NOTES IN COMPUTER SCIENCE 2003. [DOI: 10.1007/3-540-44864-0_9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
47
Saue T, Visscher L. Four-Component Electronic Structure Methods for Molecules. THEORETICAL CHEMISTRY AND PHYSICS OF HEAVY AND SUPERHEAVY ELEMENTS 2003. [DOI: 10.1007/978-94-017-0105-1_6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
48
Yanai T, Nakajima T, Ishikawa Y, Hirao K. A highly efficient algorithm for electron repulsion integrals over relativistic four-component Gaussian-type spinors. J Chem Phys 2002. [DOI: 10.1063/1.1479351] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
49
Saue T, Helgaker T. Four-component relativistic Kohn-Sham theory. J Comput Chem 2002;23:814-23. [PMID: 12012358 DOI: 10.1002/jcc.10066] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
50
Nakajima T, Yanai T, Hirao K. Relativistic electronic structure theory. J Comput Chem 2002;23:847-60. [PMID: 12012361 DOI: 10.1002/jcc.10059] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA