1
|
Musial M, Kucharski SA. Multireference Fock Space Coupled-Cluster Method for the (3,0) Sector. J Phys Chem A 2024; 128:9670-9681. [PMID: 39450585 DOI: 10.1021/acs.jpca.4c04357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
This work reports an implementation of a novel realization of the multireference coupled cluster theory formulated in Fock space. Extending the previous formulation carried out in the (1,1) [M. Musial, R. J. Bartlett, J. Chem. Phys. 129, 044101 (2008)], (0,2) [M. Musial, R. J. Bartlett, J. Chem. Phys. 135, 044121 (2011)], and (2,0) [M. Musial, J. Chem. Phys. 136, 134111 (2012)] sectors to the (3,0) sector, we are able to treat structures with three valence electrons. The (3,0) sector describes systems with three electrons added to the reference, which means that in order to perform correlated calculations for the neutral AB molecule, we have to adopt as the reference a triply ionized structure AB3+. A desirable situation occurs when such an ion has a closed-shell structure and also dissociates into closed shell fragments. This feature makes it possible to apply the restricted Hartree-Fock scheme for the whole range of interatomic distances. Examples of molecules of this type are the diatomics formed by the atoms of alkali metals and alkaline earth metals. An analogous structure is also exhibited by alkali metal monocarbides. In the current work, we have calculated the potential energy curves and spectroscopic constants for the LiBe, LiC, and NaC molecules.
Collapse
Affiliation(s)
- Monika Musial
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, Katowice 40-006, Poland
| | - Stanisław A Kucharski
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, Katowice 40-006, Poland
| |
Collapse
|
2
|
Zhang N, Liu W. Unified Implementation of Relativistic Wave Function Methods: 4C-iCIPT2 as a Showcase. J Chem Theory Comput 2024; 20:9003-9017. [PMID: 39356987 DOI: 10.1021/acs.jctc.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
In parallel to the unified construction of relativistic Hamiltonians based solely on physical arguments (J. Chem. Phys. 2024, 160, 084111), a unified implementation of relativistic wave function methods is achieved here via programming techniques (e.g., template metaprogramming and polymorphism in C++). That is, once the code for constructing the Hamiltonian matrix is made ready, all the rest can be generated automatically from existing templates used for the nonrelativistic counterparts. This is facilitated by decomposing a second-quantized relativistic Hamiltonian into diagrams that are topologically the same as those required for computing the basic coupling coefficients between spin-free configuration state functions (CSF). Moreover, both time reversal and binary double point group symmetries can readily be incorporated into molecular integrals and Hamiltonian matrix elements. The latter can first be evaluated in the space of (randomly selected) spin-dependent determinants and then transformed to that of spin-dependent CSFs, thanks to simple relations in between. As a showcase, we consider here the no-pair four-component relativistic iterative configuration interaction with selection and perturbation correction (4C-iCIPT2), which is a natural extension of the spin-free iCIPT2 (J. Chem. Theory Comput. 2021, 17, 949), and can provide near-exact numerical results within the manifold of positive energy states (PES), as demonstrated by numerical examples.
Collapse
Affiliation(s)
- Ning Zhang
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Marshall M, Zhu Z, Nguyen TS, Tufekci BA, Foreman K, Peterson KA, Bowen KH. Anion photoelectron spectroscopy and chemical bonding of ThS2- and ThSO. J Chem Phys 2024; 161:144309. [PMID: 39387412 DOI: 10.1063/5.0229157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Anion photoelectron spectra of ThSO- and ThS2- were recorded using the third (355 nm) harmonic of an Nd-YAG laser; these provided the measured vertical detachment energies of each anion. The experiments are supported by extensive coupled cluster calculations on ThSO, ThSO-, ThS2, and ThS2-, as well as the oxygen congeners ThO2 and ThO2-. The ab initio calculations, which included complete basis set extrapolations, spin-orbit effects using four-component coupled cluster, and higher-order correlation contributions through CCSDT(Q), yielded an adiabatic electron affinity for ThO2 that was within 0.02 eV of the previously determined experimental value. The singly occupied molecular orbital (SOMO) in all three anions corresponds primarily to the 7s orbital on Th. Successive substitution of S for each O in ThO2 leads to larger electron affinities and smaller bond angles in the neutral molecules, but larger angles in the anions. As demonstrated by Franck-Condon simulations of the spectra using the CCSD(T) spectroscopic constants, substitution of O by S significantly complicates the resulting detachment spectra due to the lower vibrational frequencies in the sulfur species. Overall the calculated vertical detachment energies are in very good agreement with the experiment. In addition to the adiabatic electron affinities of each species, atomization energies and heats of formation have also been determined via the FPD approach with expected uncertainties of 1-2 kcal/mol.
Collapse
Affiliation(s)
- Mary Marshall
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Truong-Son Nguyen
- Department of Chemistry, Washington State University, Pullman, Washington 99162, USA
| | - Burak A Tufekci
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Kathryn Foreman
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99162, USA
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
4
|
Hu Y, Wang Z, Wang F, Meissner L. Triple Electron Attachments with a New Intermediate-Hamiltonian Fock-Space Coupled-Cluster Method. J Phys Chem A 2024; 128:8279-8291. [PMID: 39270002 PMCID: PMC11440602 DOI: 10.1021/acs.jpca.4c03772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
The implementation of a new intermediate-Hamiltonian Fock-space coupled-cluster (IHFSCC) scheme for the (3,0) sector of the Fock space is reported. In this IHFSCC approach, the three-body contributions in the cluster operator S(3,0) corresponding to the (3,0) sector of the Fock space are considered, while S(1,0) and S(2,0) at the (1,0) and (2,0) level only include one- and two-body operators. By introducing a suitable partition of the wave operator, the intermediate Hamiltonian, which only depends on the two-body operator of S(1,0), is obtained. S(2,0) and S(3,0) are not required within this new IHFSCC scheme, and a large reference space can be possibly employed. The performance of this (3,0) IHFSCC method in calculating triple ionization potentials and excitation energies for atoms and cations with a ground p3 configuration as well as adiabatic excitation energies for some molecules is investigated. The effect of the number of active virtual orbitals and three different types of orbitals, i.e., reference orbitals, restricted open-shell Hartree-Fock orbitals (ROHF) of the target systems, and canonicalized ROHF orbitals, on IHFSCC results, is also studied. Our calculations indicate that reasonable results can be achieved with this (3,0) IHFSCC method when a minimal reference space is employed. Further increasing the number of active orbitals does not necessarily improve the results. In addition, the IHFSCC results using canonicalized ROHF orbitals generally agree well with reference values, and they are not very sensitive to the number of active orbitals compared with results using the reference orbitals. The new (3,0) IHFSCC method can be applied to open-shell systems with three unpaired electrons with reasonable accuracy at a relatively low computational cost.
Collapse
Affiliation(s)
- Yanmei Hu
- Institute
of Atomic and Molecular Physics, Key Laboratory of High Energy Density
Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People’s
Republic of China
| | - Zhifan Wang
- College
of Chemistry and Life Science, Chengdu Normal
University, Chengdu 611130, People’s Republic
of China
| | - Fan Wang
- Institute
of Atomic and Molecular Physics, Key Laboratory of High Energy Density
Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People’s
Republic of China
| | - Leszek Meissner
- Institute
of Physics, Nicholaus Copernicus University, Grudziadzka 5/7, Toruń 87-100, Poland
| |
Collapse
|
5
|
Demidov YA, Shalaevsky AA, Oleynichenko AV, Rusakov AA. Uncovering chemical homology of superheavy elements: a close look at astatine. Phys Chem Chem Phys 2024; 26:23823-23834. [PMID: 39230259 DOI: 10.1039/d4cp01868k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The fascination with superheavy elements (SHE) spans the nuclear physics, astrophysics, and theoretical chemistry communities. Extreme relativistic effects govern these elements' chemistry and challenge the traditional notion of the periodic law. The experimental quest for SHE critically depends on theoretical predictions of these elements' properties, especially chemical homology, which allows for successful prototypical experiments with more readily available lighter homologues of SHE. This work is a comprehensive quantum-chemical investigation into astatine (At) as a non-intuitive homologue of element 113, nihonium (Nh). Combining relativistic coupled-cluster and density functional theory approaches, we model the behaviour of At and AtOH in thermochromatographic experiments on a pristine gold surface. Insights into the electronic structure of AtOH and NhOH and accurate estimates of At-gold and AtOH-gold adsorption energies rationalise recent experimental findings and justify the use of At as a chemical homologue of Nh for the successful design of future experiments on Nh detection and chemical characterisation.
Collapse
Affiliation(s)
- Yuriy A Demidov
- B. P. Konstantinov Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), Orlova Roscha, 1, 188300 Gatchina, Russia
- St. Petersburg Electrotechnical University "LETI", 197376 St. Petersburg, Russia
| | | | - Alexander V Oleynichenko
- B. P. Konstantinov Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), Orlova Roscha, 1, 188300 Gatchina, Russia
| | - Alexander A Rusakov
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, USA.
| |
Collapse
|
6
|
Yuwono SH, Li RR, Zhang T, Surjuse KA, Valeev EF, Li X, Eugene DePrince A. Relativistic Coupled Cluster with Completely Renormalized and Perturbative Triples Corrections. J Phys Chem A 2024. [PMID: 39074123 DOI: 10.1021/acs.jpca.4c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
We have implemented noniterative triples corrections to the energy from coupled-cluster with single and double excitations (CCSD) within the 1-electron exact two-component (1eX2C) relativistic framework. The effectiveness of both the CCSD(T) and the completely renormalized (CR) CC(2,3) approaches are demonstrated by performing all-electron computations of the potential energy curves and spectroscopic constants of copper, silver, and gold dimers in their ground electronic states. Spin-orbit coupling effects captured via the 1eX2C framework are shown to be crucial for recovering the correct shape of the potential energy curves, and the correlation effects due to triples in these systems change the dissociation energies by about 0.1-0.2 eV or about 4-7%. We also demonstrate that relativistic effects and basis set size and contraction scheme are significantly more important in Au2 than in Ag2 or Cu2.
Collapse
Affiliation(s)
- Stephen H Yuwono
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Run R Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
7
|
Sato A, Hada M, Abe M. Electron correlation effects on uranium isotope fractionation in U(VI)-U(VI) and U(IV)-U(VI) equilibrium isotopic exchange systems. Phys Chem Chem Phys 2024; 26:15301-15315. [PMID: 38771267 DOI: 10.1039/d4cp01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Uranium isotope fractionation has been extensively investigated in the fields of nuclear engineering and geochemical studies, yet the underlying mechanisms remain unclear. This study assessed isotope fractionations in U(VI)-U(VI) and U(IV)-U(VI) systems by employing various relativistic electron correlation methods to explore the effect of electron correlation and to realize accurate calculations of isotope fractionation coefficients (ε). The nuclear volume term, ln Knv, the major term in ε, was estimated using the exact two-component relativistic Hamiltonian in conjunction with either HF, DFT(B3LYP), MP2, CCSD, CCSD(T), FSCCSD, CASPT2, or RASPT2 approaches for small molecular models with high symmetry. In contrast, chemical species studied in prior experimental work had moderate sizes and were asymmetrical. In such cases, electron correlation calculations other than DFT calculations were not possible and so only the HF and B3LYP approaches were employed. For closed-shell U(VI)-U(VI) systems, the MP2, CCSD and CCSD(T) methods yielded similar ln Knv values that were intermediate between those for the HF and B3LYP methods. Comparisons with experimental results for U(VI)-U(VI) systems showed that the B3LYP calculations gave results closer to the experimental data than the HF calculations. Because of the open-shell structure of U(IV), multireference methods involving the FSCCSD, CASPT2 and RASPT2 techniques were used for U(IV)-U(VI) systems, but these calculations exhibited instability. The average-of-configuration HF method showed better agreement with the experimental ε values for U(IV)-U(VI) systems than the B3LYP method. Overall, electron correlation improved the description of ε for the U(VI)-U(VI) systems but challenges remain with regard to open-shell U(IV) calculations because an energy accuracy of 10-6-10-7Eh is required for ln Knv calculations.
Collapse
Affiliation(s)
- Ataru Sato
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachiojii-shi Tokyo 192-0397, Japan.
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima City Hiroshima 739-8526, Japan
| | - Masahiko Hada
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachiojii-shi Tokyo 192-0397, Japan.
| | - Minori Abe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachiojii-shi Tokyo 192-0397, Japan.
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima City Hiroshima 739-8526, Japan
| |
Collapse
|
8
|
Zhang T, Banerjee S, Koulias LN, Valeev EF, DePrince AE, Li X. Dirac-Coulomb-Breit Molecular Mean-Field Exact-Two-Component Relativistic Equation-of-Motion Coupled-Cluster Theory. J Phys Chem A 2024; 128:3408-3418. [PMID: 38651293 DOI: 10.1021/acs.jpca.3c08167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We present a relativistic equation-of-motion coupled-cluster with single and double excitation formalism within the exact two-component framework (X2C-EOM-CCSD), where both scalar relativistic effects and spin-orbit coupling are variationally included at the reference level. Three different molecular mean-field treatments of relativistic corrections, including the one-electron, Dirac-Coulomb, and Dirac-Coulomb-Breit Hamiltonian, are considered in this work. Benchmark calculations include atomic excitations and fine-structure splittings arising from spin-orbit coupling. Comparison with experimental values and relativistic time-dependent density functional theory is also carried out. The computation of the oscillator strength using the relativistic X2C-EOM-CCSD approach allows for studies of spin-orbit-driven processes, such as the spontaneous phosphorescence lifetime.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Samragni Banerjee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lauren N Koulias
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Edward F Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
Zhang C, Lipparini F, Stopkowicz S, Gauss J, Cheng L. Cholesky Decomposition-Based Implementation of Relativistic Two-Component Coupled-Cluster Methods for Medium-Sized Molecules. J Chem Theory Comput 2024; 20:787-798. [PMID: 38198515 DOI: 10.1021/acs.jctc.3c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A Cholesky decomposition (CD)-based implementation of relativistic two-component coupled-cluster (CC) and equation-of-motion CC (EOM-CC) methods using an exact two-component Hamiltonian augmented with atomic-mean-field spin-orbit integrals (the X2CAMF scheme) is reported. The present CD-based implementation of X2CAMF-CC and EOM-CC methods employs atomic-orbital-based algorithms to avoid the construction of two-electron integrals and intermediates involving three and four virtual indices. Our CD-based implementation extends the applicability of X2CAMF-CC and EOM-CC methods to medium-sized molecules with the possibility to correlate around 1000 spinors. Benchmark calculations for uranium-containing small molecules were performed to assess the dependence of the CC results on the Cholesky threshold. A Cholesky threshold of 10-4 is shown to be sufficient to maintain chemical accuracy. Example calculations to illustrate the capability of the CD-based relativistic CC methods are reported for the bond-dissociation energy of the uranium hexafluoride molecule, UF6, with up to quadruple-ζ basis sets, and the lowest excitation energy in the solvated uranyl ion [UO22+(H2O)12].
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, the Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa I-56124, Italy
| | - Stella Stopkowicz
- Fachrichtung Chemie, Universität des Saarlandes, Saarbrücken D-66123, Germany
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0315, Norway
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| | - Lan Cheng
- Department of Chemistry, the Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Smirnov AN, Solomonik VG. A route to high-accuracy ab initio description of electronic excited states in high-spin lanthanide-containing species: A case study of GdO. J Chem Phys 2023; 159:164304. [PMID: 37877487 DOI: 10.1063/5.0173916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Accurate description of electronic excited states of high-spin molecular species is a yet unsolved problem in modern electronic structure theory. A composite computational scheme developed in the present work contributes to solving this task for a challenging case of lanthanide-containing molecules. In the scheme, the highest-spin states whose wavefunctions are dominated by a single Slater determinant are described at the single-reference (SR) CCSD(T) level, whereas the lower-spin states, being inherently multiconfigurational in their nature, are treated with multireference (MR) methods, MRCI and/or CASPT2. An original technique which scales MR results against SR CCSD(T) ones to improve the accuracy in the former is proposed and examined, taking the example of 12 electronic states of gadolinium monoxide, X9Σ-, Y7Σ-, A'9Δ, A1'7Δ, A9Π, A17Π, B9Σ-, B17Σ-, C9Π, C17Π, D9Σ-, and D17Σ-, up to 35 000 cm-1. A multitude of the corresponding Ω (spin-coupled) states was then studied within the state-interacting approach employing the full Breit-Pauli spin-orbit coupling operator with CASSCF-generated ΛS states as a basis. For all ΛS and Ω states, the Gd-O bond lengths, spectroscopic constants ωe, ωexe, αe, and adiabatic excitation energies are obtained. The theoretical predictions are in good agreement with the experimental data, with deviations in excitation energies not exceeding 350 cm-1 (1 kcal/mol). The spectroscopic properties of the yet unobserved electronic states, A'9Δ, A1'7Δ, C9Π, C17Π, D9Σ-, and D17Σ-, are evaluated for the first time.
Collapse
Affiliation(s)
- Alexander N Smirnov
- Department of Physics, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| | - Victor G Solomonik
- Department of Physics, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| |
Collapse
|
11
|
Guo Y, Zhang N, Liu W. SOiCISCF: Combining SOiCI and iCISCF for Variational Treatment of Spin-Orbit Coupling. J Chem Theory Comput 2023; 19:6668-6685. [PMID: 37728243 DOI: 10.1021/acs.jctc.3c00789] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
It has recently been shown that the SOiCI approach [Zhang, N.; J. Phys.: Condens. Matter 2022, 34, 224007], in conjunction with the spin-separated exact two-component relativistic Hamiltonian, can provide very accurate fine structures of systems containing heavy elements by treating electron correlation and spin-orbit coupling (SOC) on an equal footing. Nonetheless, orbital relaxations/polarizations induced by SOC are not yet fully accounted for due to the use of scalar relativistic orbitals. This issue can be resolved by further optimizing the still real-valued orbitals self-consistently in the presence of SOC, as done in the spin-orbit coupled CASSCF approach [Ganyushin, D.; et al. J. Chem. Phys. 2013, 138, 104113] but with the iCISCF algorithm [Guo, Y.; J. Chem. Theory Comput. 2021, 17, 7545-7561] for large active spaces. The resulting SOiCISCF employs both double group and time reversal symmetries for computational efficiency and the assignment of target states. The fine structures of p-block elements are taken as showcases to reveal the efficacy of SOiCISCF.
Collapse
Affiliation(s)
- Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Ning Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
12
|
Skripnikov LV, Oleynichenko AV, Zaitsevskii A, Mosyagin NS, Athanasakis-Kaklamanakis M, Au M, Neyens G. Ab initio study of electronic states and radiative properties of the AcF molecule. J Chem Phys 2023; 159:124301. [PMID: 38127371 DOI: 10.1063/5.0159888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/01/2023] [Indexed: 12/23/2023] Open
Abstract
Relativistic coupled-cluster calculations of the ionization potential, dissociation energy, and excited electronic states under 35 000 cm-1 are presented for the actinium monofluoride (AcF) molecule. The ionization potential is calculated to be IPe = 48 866 cm-1, and the ground state is confirmed to be a closed-shell singlet and thus strongly sensitive to the T,P-violating nuclear Schiff moment of the Ac nucleus. Radiative properties and transition dipole moments from the ground state are identified for several excited states, achieving a mean uncertainty estimate of ∼450 cm-1 for the excitation energies. For higher-lying states that are not directly accessible from the ground state, possible two-step excitation pathways are proposed. The calculated branching ratios and Franck-Condon factors are used to investigate the suitability of AcF for direct laser cooling. The lifetime of the metastable (1)3Δ1 state, which can be used in experimental searches of the electric dipole moment of the electron, is estimated to be of order 1 ms.
Collapse
Affiliation(s)
- Leonid V Skripnikov
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), 1 Orlova roscha, Gatchina, 188300 Leningrad region, Russia
- Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander V Oleynichenko
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), 1 Orlova roscha, Gatchina, 188300 Leningrad region, Russia
| | - Andréi Zaitsevskii
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), 1 Orlova roscha, Gatchina, 188300 Leningrad region, Russia
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1/3, Moscow 119991, Russia
| | - Nikolai S Mosyagin
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), 1 Orlova roscha, Gatchina, 188300 Leningrad region, Russia
| | - Michail Athanasakis-Kaklamanakis
- Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - Mia Au
- Systems Department, CERN, CH-1211 Geneva 23, Switzerland
| | - Gerda Neyens
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| |
Collapse
|
13
|
Lawzer AL, Ganesan E, Gronowski M, Custer T, Guillemin JC, Kołos R. Free Ethynylarsinidene and Ethynylstibinidene: Heavier Analogues of Nitrenes and Phosphinidenes. Chemistry 2023; 29:e202300887. [PMID: 37278982 DOI: 10.1002/chem.202300887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
Until now, there has been very little experimental evidence for the existence of free arsinidenes and stibinidenes, apart from the hydrides, AsH and SbH. Here, we report on photogeneration of triplet ethynylarsinidene, HCCAs, and triplet ethynylstibinidene, HCCSb, from ethynylarsine and ethynylstibine, respectively, in solid argon matrices. The products were identified using infrared spectroscopy and the associated UV absorption spectra are interpreted with the aid of theoretical predictions.
Collapse
Affiliation(s)
- Arun-Libertsen Lawzer
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Elavenil Ganesan
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Marcin Gronowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Thomas Custer
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Jean-Claude Guillemin
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, IRCR-UMR 6226, 35000, Rennes, France
| | - Robert Kołos
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
14
|
de Macedo LGM, de Castro Vieira YC, de Oliveira RM, Gargano R. Relativistic four-component MRCISD+Q calculations of the six lowest valence states of molecular [Formula: see text] anion including breit interactions. J Mol Model 2023; 29:207. [PMID: 37310506 DOI: 10.1007/s00894-023-05564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 06/14/2023]
Abstract
CONTEXT AND RESULTS This study aimed to obtain potential energy curves within a multireference 4-component relativistic method and to present spectroscopic constants (R[Formula: see text],[Formula: see text],[Formula: see text]x[Formula: see text],[Formula: see text]y[Formula: see text], D[Formula: see text], D[Formula: see text], B[Formula: see text],[Formula: see text],[Formula: see text],[Formula: see text] ), accurate extended Rydberg analytical form, and rovibrational levels for the 6 low-lying states of the I[Formula: see text] anion. For these states, some spectroscopic constants, rovibrational levels, and an accurate analytical form are presented for the first time in literature, and they are of interest for femtosecond and dynamics experiments of I[Formula: see text] as well as for electron attachment of I[Formula: see text]. This study suggests that the inclusion of relativistic and correlation effects treated at the MRCISD+Q level is needed to obtain reliable results, specially for D[Formula: see text]. COMPUTATIONAL AND THEORETICAL TECHNIQUES The potential energy curves of the ground and the excited states of the molecular iodine anion (I[Formula: see text]) were investigated at multireference configuration interaction (MRCISD) with Davidson size-extensivity correction (denoted as +Q) within a fully relativistic four-component relativistic framework including Breit interaction.
Collapse
Affiliation(s)
- Luiz Guilherme Machado de Macedo
- Campus Centro Oeste Dona Lindu, Universidade Federal de São João Del Rei, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brasil.
| | - Yasmin Celen de Castro Vieira
- Campus Centro Oeste Dona Lindu, Universidade Federal de São João Del Rei, Rua Sebastião Gonçalves Coelho, 400, Divinópolis, 35501-296, Minas Gerais, Brasil
| | - Rhuiago Mendes de Oliveira
- Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, Av. João Alberto, 1840, Bacabal, 65700-000, Maranhão, Brasil
| | - Ricardo Gargano
- Instituto de Física, Universidade de Brasília, P.O. Box 04455, Brasília, 70919-970, Distrito Federal, Brasil
| |
Collapse
|
15
|
Kotov AA, Kozhedub YS, Glazov DA, Iliaš M, Pershina V, Shabaev VM. Relativistic Coupled-Cluster Calculations of Spectroscopic Properties of Copernicium and Flerovium Monoxides. Chemphyschem 2023; 24:e202200680. [PMID: 36383485 DOI: 10.1002/cphc.202200680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
Abstract
Calculations of spectroscopic properties of the CnO and FlO molecules are performed using ab initio all-electron 4c- and 2c-relativistic coupled-cluster approaches with single, double, and perturbative triple excitations. The corresponding calculation for HgO is also accomplished for comparison with the published data. The dependence of the results on the parameters of the basis set and approximations used is investigated in detail. The overall relative uncertainties of the recommended values on the level of 1-2 % are reached. The calculated spectroscopic constants are indicative of the following trend in the reactivity of the oxides HgO>FlO>CnO. This is confirmed by the trend in the adsorption energies, Eads , of these molecules on the surfaces of gold, quartz, and Teflon. The predicted rather low Eads values for the latter case should guarantee their delivery from the recoil chamber to the chemistry set up in gas-phase experiments.
Collapse
Affiliation(s)
- Artem A Kotov
- Department of Physics, St. Petersburg State University, 199034, St. Petersburg, Russia
| | - Yury S Kozhedub
- Department of Physics, St. Petersburg State University, 199034, St. Petersburg, Russia
| | - Dmitry A Glazov
- Department of Physics, St. Petersburg State University, 199034, St. Petersburg, Russia
| | - Miroslav Iliaš
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401, Banská Bystrica, Slovakia.,Helmholtz-Institut Mainz, Johannes Gutenberg-Universität, 55099, Mainz, Germany.,GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291, Darmstadt, Germany
| | - Valeria Pershina
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291, Darmstadt, Germany
| | - Vladimir M Shabaev
- Department of Physics, St. Petersburg State University, 199034, St. Petersburg, Russia
| |
Collapse
|
16
|
Wang X, Sharma S. Relativistic Semistochastic Heat-Bath Configuration Interaction. J Chem Theory Comput 2023; 19:848-855. [PMID: 36700783 DOI: 10.1021/acs.jctc.2c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work we present the extension of semistochastic heat-bath configuration interaction (SHCI) to work with any two-component and four-component Hamiltonian. The vertical detachment energy (VDE) of AuH2- and zero-field splitting (ZFS) of NpO22+ is calculated by correlating more than 100 spinors in both cases. This work demonstrates the capability of SHCI to treat problems where both relativistic effect and electron correlation are important.
Collapse
Affiliation(s)
- Xubo Wang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado80309, United States
| |
Collapse
|
17
|
Bross DH, Bacskay GB, Peterson KA, Ruscic B. Active Thermochemical Tables: Enthalpies of Formation of Bromo- and Iodo-Methanes, Ethenes and Ethynes. J Phys Chem A 2023; 127:704-723. [PMID: 36635235 DOI: 10.1021/acs.jpca.2c07897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The thermochemistry of halocarbon species containing iodine and bromine is examined through an extensive interplay between new Feller-Peterson-Dixon (FPD) style composite methods and a detailed analysis of all available experimental and theoretical determinations using the thermochemical network that underlies the Active Thermochemical Tables (ATcT). From the computational viewpoint, a slower convergence of the components of composite thermochemistry methods is observed relative to species that solely contain first row elements, leading to a higher computational expense for achieving comparable levels of accuracy. Potential systematic sources of computational uncertainty are investigated, and, not surprisingly, spin-orbit coupling is found to be a critical component, particularly for iodine containing molecular species. The ATcT analysis of available experimental and theoretical determinations indicates that prior theoretical determinations have significantly larger uncertainties than originally reported, particularly in cases where molecular spin-orbit effects were ignored. Accurate and reliable heats of formation are reported for 38 halogen containing systems, based on combining the current computations with previous experimental and theoretical work via the ATcT approach.
Collapse
Affiliation(s)
- David H Bross
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - George B Bacskay
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Branko Ruscic
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
18
|
Liu W. Perspective: Simultaneous treatment of relativity, correlation, and
QED. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong China
| |
Collapse
|
19
|
Isaev T, Makinskii D, Zaitsevskii A. Radium-containing molecular cations amenable for laser cooling. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Zhang N, Xiao Y, Liu W. SOiCI and iCISO: combining iterative configuration interaction with spin-orbit coupling in two ways. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:224007. [PMID: 35287124 DOI: 10.1088/1361-648x/ac5db4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The near-exact iCIPT2 approach for strongly correlated systems of electrons, which stems from the combination of iterative configuration interaction (iCI, an exact solver of full CI) with configuration selection for static correlation and second-order perturbation theory (PT2) for dynamic correlation, is extended to the relativistic domain. In the spirit of spin separation, relativistic effects are treated in two steps: scalar relativity is treated by the infinite-order, spin-free part of the exact two-component (X2C) relativistic Hamiltonian, whereas spin-orbit coupling (SOC) is treated by the first-order, Douglas-Kroll-Hess-like SOC operator derived from the same X2C Hamiltonian. Two possible combinations of iCIPT2 with SOC are considered, i.e., SOiCI and iCISO. The former treats SOC and electron correlation on an equal footing, whereas the latter treats SOC in the spirit of state interaction, by constructing and diagonalizing an effective spin-orbit Hamiltonian matrix in a small number of correlated scalar states. Both double group and time reversal symmetries are incorporated to simplify the computation. Pilot applications reveal that SOiCI is very accurate for the spin-orbit splitting (SOS) of heavy atoms, whereas the computationally very cheap iCISO can safely be applied to the SOS of light atoms and even of systems containing heavy atoms when SOC is largely quenched by ligand fields.
Collapse
Affiliation(s)
- Ning Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yunlong Xiao
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
21
|
Lu Y, Wang Z, Wang F. Intermediate Hamiltonian Fock-space coupled-cluster theory for excitation energies, double ionization potentials, and double electron attachments with spin–orbit coupling. J Chem Phys 2022; 156:114111. [DOI: 10.1063/5.0076462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The intermediate Hamiltonian Fock-space coupled-cluster methods at the singles and doubles level (IHFSCCSD) for excitation energies in the (1p, 1h) sector, double ionization potentials in the (0p, 2h) sector, and double electron attachments in the (2p, 0h) sector of the Fock space are implemented based on the CCSD method with spin–orbit coupling (SOC) included in the post-Hartree–Fock treatment using a closed-shell reference in this work. The active space is chosen to contain those orbitals that have the largest contribution to principal ionized or electron-attached states obtained from the equation-of-motion coupled-cluster calculations. Both time-reversal symmetry and spatial symmetry are exploited in the implementation. Our results show that the accuracy of IHFSCCSD results is closely related to the active space, and the sufficiency of the active space can be assessed from the percentage of transitions within the active space. In addition, unreasonable results may be encountered when the ionized or electron-attached states with a somewhat larger contribution from double excitations are included to determine the active space and cluster operators in the (0p, 1h) or (1p, 0h) sector of the Fock space. A larger active space may be required to describe SO splitting reliably than that in the scalar-relativistic calculations in some cases. The IHFSCCSD method with SOC developed in this work can provide reliable results for heavy-element systems when a sufficient active space built upon the principal ionization potential/electron affinity states is adopted.
Collapse
Affiliation(s)
- Yanzhao Lu
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Zhifan Wang
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, People’s Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
22
|
Vasiliu M, Peterson KA, Marshall M, Zhu Z, Tufekci BA, Bowen KH, Dixon DA. Interaction of Th with H 0/-/+: Combined Experimental and Theoretical Thermodynamic Properties. J Phys Chem A 2022; 126:198-210. [PMID: 34989579 DOI: 10.1021/acs.jpca.1c07598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-level electronic structure calculations of the low-lying energy electronic states for ThH, ThH-, and ThH+ are reported and compared to experimental measurements. The inclusion of spin-orbit coupling is critical to predict the ground-state ordering as inclusion of spin-orbit switches the coupled-cluster CCSD(T) ordering of the two lowest energy states for ThH and ThH+. At the multireference spin-orbit SO-CASPT2 level, the ground states of ThH, ThH-, and ThH+ are predicted to be the 2Δ3/2, 3Φ2, and 3Δ1 states, respectively. The adiabatic electron affinity is calculated to be 0.820 eV, and the vertical detachment energy is calculated to be 0.832 eV in comparison to an experimental value of 0.87 ± 0.02 eV. The observed ThH- photoelectron spectrum has many transitions, which approximately correlate with excitations of Th+ and/or Th. The adiabatic ionization energy of ThH including spin-orbit corrections is calculated to be 6.181 eV. The natural bond orbital results are consistent with a significant contribution of the Th+H- ionic configuration to the bonding in ThH. The bond dissociation energies for ThH, ThH-, and ThH+ using the Feller-Peterson-Dixon approach were calculated to be similar for all three molecules and lie between 259 and 280 kJ/mol.
Collapse
Affiliation(s)
- Monica Vasiliu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, Unites States
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, Unites States
| | - Mary Marshall
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, Unites States
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, Unites States
| | - Burak A Tufekci
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, Unites States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, Unites States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35401, Unites States
| |
Collapse
|
23
|
Osika Y, Shundalau M. Fock-space relativistic coupled cluster study on the RaF molecule promising for the laser cooling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120274. [PMID: 34438114 DOI: 10.1016/j.saa.2021.120274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/05/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The potential energy curves of the ground and five low-lying excited terms of the RaF molecule are calculated using the Fock-space relativistic coupled theory. The electronic term energies, equilibrium internuclear distances, transition and permanent dipole moments, sequences of vibrational energies, harmonic vibrational frequencies, Franck-Condon factors, and radiative lifetimes are predicted. The calculated spectroscopic constants are in good agreement with the available theoretical and experimental data. The scheme for the direct laser cooling involving the first excited A2П1/2 state is proposed. The data obtained in this study suggests the A2П1/2 → X2Σ+ channel in the RaF molecule is the almost ideal case for direct laser cooling. It is quite possible that the effective cooling scheme for the RaF molecule can be realized using only one pump laser.
Collapse
Affiliation(s)
- Yuliya Osika
- Faculty of Physics, Belarusian State University, 4 Nezaležnaści Ave., Minsk 220030, Belarus
| | - Maksim Shundalau
- Faculty of Physics, Belarusian State University, 4 Nezaležnaści Ave., Minsk 220030, Belarus.
| |
Collapse
|
24
|
Shakhova V, Maltsev D, Lomachuk Y, Mosyagin NS, Skripnikov L, Titov AV. Compound-tunable embedding potential method: Analisys of pseudopotentials for Yb in YbF 2, YbF 3, YbCl 2 and YbCl 3 crystals. Phys Chem Chem Phys 2022; 24:19333-19345. [DOI: 10.1039/d2cp01738e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compound-tunable embedding potential (CTEP) method developed in [Lomachuk et al., PCCP, 2020, 22, 17922; Maltsev et al., PRB, 2021, 103, 205105] to describe electronic structure of fragments and point defects...
Collapse
|
25
|
Hu SX, Zou W. Stable copernicium hexafluoride (CnF 6) with an oxidation state of VI. Phys Chem Chem Phys 2021; 24:321-325. [PMID: 34889909 DOI: 10.1039/d1cp04360a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the heaviest group 12 element known currently, copernicium (Cn) often presents the oxidation states of I+, II+, and rarely IV+ as in its homologue mercury. In this work we systematically studied the stability of some oxides, fluorides, and oxyfluorides of Cn by two-component relativistic calculations and found that the CnF6 molecule with an oxidation state of VI+ has an extraordinary stability. CnF6 may decompose into CnF4 by conquering an energy barrier of about 34 kcal mol-1 without markedly releasing heat. Our results indicate that CnF6 may exist under some special conditions.
Collapse
Affiliation(s)
- Shu-Xian Hu
- Department of Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an, Shaanxi 710127, P. R. China.
| |
Collapse
|
26
|
Pototschnig JV, Dyall KG, Visscher L, Gomes ASP. Electronic spectra of ytterbium fluoride from relativistic electronic structure calculations. Phys Chem Chem Phys 2021; 23:22330-22343. [PMID: 34596656 PMCID: PMC8514048 DOI: 10.1039/d1cp03701c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022]
Abstract
We report an investigation of the low-lying excited states of the YbF molecule-a candidate molecule for experimental measurements of the electron electric dipole moment-with 2-component based multi-reference configuration interaction (MRCI), equation of motion coupled cluster (EOM-CCSD) and the extrapolated intermediate Hamiltonian Fock-space coupled cluster (XIHFS-CCSD). Specifically, we address the question of the nature of these low-lying states in terms of configurations containing filled or partially-filled Yb 4f shells. We show that while it does not appear possible to carry out calculations with both kinds of configurations contained in the same active space, reliable information can be extracted from different sectors of Fock space-that is, by performing electron attachment and detachment IHFS-CCSD and EOM-CCSD calculation on the closed-shell YbF+ and YbF- species, respectively. From these calculations we predict Ω = 1/2, 3/2 states, arising from the 4f13σ26s, 4f145d1/6p1, and 4f135d1σ16s configurations to be able to interact as they appear in the same energy range around the ground-state equilibrium geometry. As these states are generated from different sectors of Fock space, they are almost orthogonal and provide complementary descriptions of parts of the excited state manifold. To obtain a comprehensive picture, we introduce a simple adiabatization model to extract energies of interacting Ω = 1/2, 3/2 states that can be compared to experimental observations.
Collapse
Affiliation(s)
- Johann V Pototschnig
- Institut für Experimentalphysik, Technische Universität Graz, Petersgasse 16, 8010 Graz, Austria.
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands.
| | - Kenneth G Dyall
- Dirac Solutions, 10527 NW Lost Park Drive, Portland, OR 97229, USA.
| | - Lucas Visscher
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands.
| | - André Severo Pereira Gomes
- Université de Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers, Atomes et Molécules, F-59000 Lille, France.
| |
Collapse
|
27
|
Haase PAB, Doeglas DJ, Boeschoten A, Eliav E, Iliaš M, Aggarwal P, Bethlem HL, Borschevsky A, Esajas K, Hao Y, Hoekstra S, Marshall VR, Meijknecht TB, Mooij MC, Steinebach K, Timmermans RGE, Touwen AP, Ubachs W, Willmann L, Yin Y. Systematic study and uncertainty evaluation of P, T-odd molecular enhancement factors in BaF. J Chem Phys 2021; 155:034309. [PMID: 34293876 DOI: 10.1063/5.0047344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A measurement of the magnitude of the electric dipole moment of the electron (eEDM) larger than that predicted by the Standard Model (SM) of particle physics is expected to have a huge impact on the search for physics beyond the SM. Polar diatomic molecules containing heavy elements experience enhanced sensitivity to parity (P) and time-reversal (T)-violating phenomena, such as the eEDM and the scalar-pseudoscalar (S-PS) interaction between the nucleons and the electrons, and are thus promising candidates for measurements. The NL-eEDM collaboration is preparing an experiment to measure the eEDM and S-PS interaction in a slow beam of cold BaF molecules [P. Aggarwal et al., Eur. Phys. J. D 72, 197 (2018)]. Accurate knowledge of the electronic structure parameters, Wd and Ws, connecting the eEDM and the S-PS interaction to the measurable energy shifts is crucial for the interpretation of these measurements. In this work, we use the finite field relativistic coupled cluster approach to calculate the Wd and Ws parameters in the ground state of the BaF molecule. Special attention was paid to providing a reliable theoretical uncertainty estimate based on investigations of the basis set, electron correlation, relativistic effects, and geometry. Our recommended values of the two parameters, including conservative uncertainty estimates, are 3.13 ±0.12×1024Hzecm for Wd and 8.29 ± 0.12 kHz for Ws.
Collapse
Affiliation(s)
- Pi A B Haase
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Diewertje J Doeglas
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Alexander Boeschoten
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Ephraim Eliav
- School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Miroslav Iliaš
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia
| | - Parul Aggarwal
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - H L Bethlem
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Anastasia Borschevsky
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Kevin Esajas
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Yongliang Hao
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Steven Hoekstra
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Virginia R Marshall
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Thomas B Meijknecht
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Maarten C Mooij
- Nikhef, National Institute for Subatomic Physics, 1098 XG Amsterdam, The Netherlands
| | - Kees Steinebach
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Rob G E Timmermans
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Anno P Touwen
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Wim Ubachs
- Department of Physics and Astronomy, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Lorenz Willmann
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Yanning Yin
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | -
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
28
|
Haldar S, Dutta AK. An efficient Fock space multi-reference coupled cluster method based on natural orbitals: Theory, implementation, and benchmark. J Chem Phys 2021; 155:014105. [PMID: 34241374 DOI: 10.1063/5.0054171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a natural orbital-based implementation of the intermediate Hamiltonian Fock space coupled-cluster method for the (1, 1) sector of Fock space. The use of natural orbitals significantly reduces the computational cost and can automatically choose an appropriate set of active orbitals. The new method retains the charge transfer separability of the original intermediate Hamiltonian Fock space coupled-cluster method and gives excellent performance for valence, Rydberg, and charge-transfer excited states. It offers significant computational advantages over the popular equation of motion coupled cluster method for excited states dominated by single excitations.
Collapse
Affiliation(s)
- Soumi Haldar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
29
|
Maison DE, Skripnikov LV, Oleynichenko AV, Zaitsevskii AV. Axion-mediated electron-electron interaction in ytterbium monohydroxide molecule. J Chem Phys 2021; 154:224303. [PMID: 34241194 DOI: 10.1063/5.0051590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The YbOH triatomic molecule can be efficiently used to measure the electron electric dipole moment, which violates time-reversal (T) and spatial parity (P) symmetries of fundamental interactions [Kozyryev and Hutzler, Phys. Rev. Lett. 119, 133002 (2017)]. We study another mechanism of the T, P-violation in the YbOH molecule-the electron-electron interaction mediated by the low-mass axionlike particle. For this, we calculate the molecular constant that characterizes this interaction and use it to estimate the expected magnitude of the effect to be measured. It is shown that this molecular constant has the same order of magnitude as the corresponding molecular constant corresponding to the axion-mediated electron-nucleus interaction. According to our estimation, an experiment on YbOH will allow one to set updated laboratory constraints on the CP-violating electron-axion coupling constants.
Collapse
Affiliation(s)
- D E Maison
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), 1 Orlova roscha, Leningrad region, Gatchina 188300, Russia
| | - L V Skripnikov
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), 1 Orlova roscha, Leningrad region, Gatchina 188300, Russia
| | - A V Oleynichenko
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), 1 Orlova roscha, Leningrad region, Gatchina 188300, Russia
| | - A V Zaitsevskii
- Petersburg Nuclear Physics Institute named by B. P. Konstantinov of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute" - PNPI), 1 Orlova roscha, Leningrad region, Gatchina 188300, Russia
| |
Collapse
|
30
|
Lu Y, Guo M, Wang Z, Wang F. Low-lying states of Tl2 and Nh2 with EOM-CC and FSCC methods. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Liu J, Cheng L. Relativistic coupled‐cluster and equation‐of‐motion coupled‐cluster methods. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Junzi Liu
- Department of Chemistry The Johns Hopkins University Baltimore Maryland USA
| | - Lan Cheng
- Department of Chemistry The Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
32
|
Musiał M, Kucharski SA, Bewicz A, Skupin P, Tomanek M. Electronic states of NaLi molecule: Benchmark results with Fock space coupled cluster approach. J Chem Phys 2021; 154:054109. [PMID: 33557573 DOI: 10.1063/5.0037441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurate potential energy curves (PECs) are obtained for 20 lowest lying electronic states of the NaLi molecule. The computational scheme used here is based on the multireference coupled cluster theory formulated in the (2,0) sector of the Fock space. The latter sector provides the description of states obtained by attachment of two electrons to the reference system. This makes it possible to adopt the doubly ionized NaLi+2 molecule as a Fermi vacuum. The latter has a very concrete advantage in calculations of the PECs since it dissociates into closed shell fragments (NaLi+2 → Na+ + Li+); hence, the restricted Hartree-Fock method can be used within the whole range of interatomic distances. Computed PECs and spectroscopic constants stay very close to the experimental values (if the latter are available) with the accuracy exceeding the other theoretical approaches including those based on the effective core polarization potentials. Relativistic corrections included at the infinite-order two-component level have a non-negligible effect on the accuracy of computed excitation and dissociation energies with contributions up to 50 cm-1.
Collapse
Affiliation(s)
- Monika Musiał
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Stanisław A Kucharski
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Anna Bewicz
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Patrycja Skupin
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Magdalena Tomanek
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
33
|
Basumallick S, Sajeev Y, Pal S, Vaval N. Negative Ion Resonance States: The Fock-Space Coupled-Cluster Way. J Phys Chem A 2020; 124:10407-10421. [PMID: 33327725 DOI: 10.1021/acs.jpca.0c09148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The negative ion resonance states, which are electron-molecule metastable compound states, play the most important role in free-electron controlled molecular reactions and low-energy free-electron-induced DNA damage. Their electronic structure is often only poorly described but crucial to an understanding of their reaction dynamics. One of the most important challenges to current electronic structure theory is the computation of negative ion resonance states. As a major step forward, coupled-cluster theories, which are well-known for their ability to produce the best approximate bound state electronic eigen solutions, are upgraded to offer the most accurate and effective approximations for negative ion resonance states. The existing Fock-space coupled-cluster (FSCC) and the equation-of-motion coupled-cluster (EOM-CC) approaches that compute bound states are redesigned for the direct and simultaneous determination of both the kinetic energy of the free electron at which the electron-molecule compound states are resonantly formed and the corresponding autodetachment decay rate of the electron from the metastable compound state. This Feature Article reviews the computation of negative ion resonances using the FSCC approach and, in passing, provides the highlights of the equivalent EOM-CC approach.
Collapse
Affiliation(s)
- Suhita Basumallick
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Y Sajeev
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400 094, India
| | - Sourav Pal
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741 246, West Bengal, India
| | - Nayana Vaval
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
34
|
Finite-Field Calculations of Transition Properties by the Fock Space Relativistic Coupled Cluster Method: Transitions between Different Fock Space Sectors. Symmetry (Basel) 2020. [DOI: 10.3390/sym12111845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Reliable information on transition matrix elements of various property operators between molecular electronic states is of crucial importance for predicting spectroscopic, electric, magnetic and radiative properties of molecules. The finite-field technique is a simple and rather accurate tool for evaluating transition matrix elements of first-order properties in the frames of the Fock space relativistic coupled cluster approach. We formulate and discuss the extension of this technique to the case of transitions between the electronic states associated with different sectors of the Fock space. Pilot applications to the evaluation of transition dipole moments between the closed-shell-like states (vacuum sector) and those dominated by single excitations of the Fermi vacuum (the 1h1p sector) in heavy atoms (Xe and Hg) and simple molecules of heavy element compounds (I2 and TlF) are reported.
Collapse
|
35
|
Oleynichenko AV, Skripnikov LV, Zaitsevskii A, Eliav E, Shabaev VM. Diagonal and off-diagonal hyperfine structure matrix elements in KCs within the relativistic Fock space coupled cluster theory. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Meissner L, Musiał M, Kucharski SA. Extension of the Fock-space coupled-cluster method with singles and doubles to the three-valence sector. J Chem Phys 2020; 153:114115. [PMID: 32962357 DOI: 10.1063/5.0014941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The single-reference coupled-cluster method has proven very effective in the ab initio description of atomic and molecular systems, but its successful application is limited to states dominated by a single Slater determinant, which is used as the reference. In cases where several determinants are important in the wave function expansion, i.e., we have to deal with nondynamic correlation effects, a multi-reference version of the coupled-cluster method is required. The multi-reference coupled-cluster approaches are based on the effective Hamiltonian formulation providing a two-step procedure, in which dynamic correlation effects can be efficiently evaluated by the wave operator, while nondynamic correlation contributions are given by diagonalization of the effective Hamiltonian in the final step. There are two classical multi-reference coupled-cluster formulations. In this paper, the focus is on the so-called Fock-space coupled-cluster method in its basic version with one- and two-particle operators in the exponent. Computational schemes using this truncation of the cluster operator have been successfully applied in calculations in one- and two-valence sectors of the Fock space. In this paper, we show that the approach can be easily extended and effectively employed in the three-valence sector calculations.
Collapse
Affiliation(s)
- Leszek Meissner
- Institute of Physics, Nicholaus Copernicus University, Grudziadzka 5/7, 87-100 Toruń, Poland
| | - Monika Musiał
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Stanisław A Kucharski
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
37
|
Vasiliu M, Peterson KA, Dixon DA. Calculated Ionization Potentials of MO3 and MO2 for M = U, Mo, W, and Nd. J Phys Chem A 2020; 124:6913-6919. [DOI: 10.1021/acs.jpca.0c05925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Monica Vasiliu
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Kirk A. Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - David A. Dixon
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States
| |
Collapse
|
38
|
Relativistic Fock Space Coupled Cluster Method for Many-Electron Systems: Non-Perturbative Account for Connected Triple Excitations. Symmetry (Basel) 2020. [DOI: 10.3390/sym12071101] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Fock space relativistic coupled cluster method (FS-RCC) is one of the most promising tools of electronic structure modeling for atomic and molecular systems containing heavy nuclei. Until recently, capabilities of the FS-RCC method were severely restricted by the fact that only single and double excitations in the exponential parametrization of the wave operator were considered. We report the design and the first computer implementation of FS-RCC schemes with full and simplified non-perturbative account for triple excitations in the cluster operator. Numerical stability of the new computational scheme and thus its applicability to a wide variety of molecular electronic states is ensured using the dynamic shift technique combined with the extrapolation to zero-shift limit. Pilot applications to atomic (Tl, Pb) and molecular (TlH) systems reported in the paper indicate that the breakthrough in accuracy and predictive power of the electronic structure calculations for heavy-element compounds can be achieved. Moreover, the described approach can provide a firm basis for high-precision modeling of heavy molecular systems with several open shells, including actinide compounds.
Collapse
|
39
|
Saue T, Bast R, Gomes ASP, Jensen HJA, Visscher L, Aucar IA, Di Remigio R, Dyall KG, Eliav E, Fasshauer E, Fleig T, Halbert L, Hedegård ED, Helmich-Paris B, Iliaš M, Jacob CR, Knecht S, Laerdahl JK, Vidal ML, Nayak MK, Olejniczak M, Olsen JMH, Pernpointner M, Senjean B, Shee A, Sunaga A, van Stralen JNP. The DIRAC code for relativistic molecular calculations. J Chem Phys 2020; 152:204104. [PMID: 32486677 DOI: 10.1063/5.0004844] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree-Fock, Kohn-Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.
Collapse
Affiliation(s)
- Trond Saue
- Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS-Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Radovan Bast
- Department of Information Technology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - André Severo Pereira Gomes
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Hans Jørgen Aa Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Lucas Visscher
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands
| | - Ignacio Agustín Aucar
- Instituto de Modelado e Innovación Tecnológica, CONICET, and Departamento de Física-Facultad de Ciencias Exactas y Naturales, UNNE, Avda. Libertad 5460, W3404AAS Corrientes, Argentina
| | - Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kenneth G Dyall
- Dirac Solutions, 10527 NW Lost Park Drive, Portland, Oregon 97229, USA
| | - Ephraim Eliav
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Elke Fasshauer
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark
| | - Timo Fleig
- Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS-Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Loïc Halbert
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
| | - Erik Donovan Hedegård
- Division of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Miroslav Iliaš
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia
| | - Christoph R Jacob
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstr. 17, 38106 Braunschweig, Germany
| | - Stefan Knecht
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Jon K Laerdahl
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Marta L Vidal
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Malaya K Nayak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Małgorzata Olejniczak
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Jógvan Magnus Haugaard Olsen
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | | | - Bruno Senjean
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands
| | - Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ayaki Sunaga
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-city, Tokyo 192-0397, Japan
| | - Joost N P van Stralen
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, NL-1081HV Amsterdam, The Netherlands
| |
Collapse
|
40
|
Haase PAB, Eliav E, Iliaš M, Borschevsky A. Hyperfine Structure Constants on the Relativistic Coupled Cluster Level with Associated Uncertainties. J Phys Chem A 2020; 124:3157-3169. [PMID: 32202783 PMCID: PMC7184561 DOI: 10.1021/acs.jpca.0c00877] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/20/2020] [Indexed: 11/29/2022]
Abstract
Accurate predictions of hyperfine structure (HFS) constants are important in many areas of chemistry and physics, from the determination of nuclear electric and magnetic moments to benchmarking of new theoretical methods. We present a detailed investigation of the performance of the relativistic coupled cluster method for calculating HFS constants within the finite-field scheme. The two selected test systems are 133Cs and 137BaF. Special attention has been paid to construct a theoretical uncertainty estimate based on investigations on basis set, electron correlation and relativistic effects. The largest contribution to the uncertainty estimate comes from higher order correlation contributions. Our conservative uncertainty estimate for the calculated HFS constants is ∼5.5%, while the actual deviation of our results from experimental values is <1% in all cases.
Collapse
Affiliation(s)
- Pi A. B. Haase
- Van
Swinderen Institute, University of Groningen, 9747 Groningen, The Netherlands
| | - Ephraim Eliav
- School
of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Miroslav Iliaš
- Department
of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovskèho 40, SK-97400 Banska Bystrica, Slovakia
| | | |
Collapse
|
41
|
Zhao H, Wang Z, Guo M, Wang F. Splittings of d 8 configurations of late-transition metals with EOM-DIP-CCSD and FSCCSD methods. J Chem Phys 2020; 152:134105. [PMID: 32268764 DOI: 10.1063/1.5145077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multireference methods are usually required for transition metal systems due to the partially filled d electrons. In this work, the single-reference equation-of-motion coupled-cluster method at the singles and doubles level for double ionization potentials (EOM-DIP-CCSD) is employed to calculate energies of states from the d8 configuration of late-transition metal atoms starting from a closed-shell reference. Its results are compared with those from the multireference Fock-space coupled-cluster method at the CCSD level (FSCCSD) for DIP from the same closed-shell reference. Both scalar-relativistic effects and spin-orbit coupling are considered in these calculations. Compared with all-electron FSCCSD results with four-component Dirac-Coulomb Hamiltonian, FSCCSD with relativistic effective core potentials can provide reasonable results, except for atoms with unstable reference. Excitation energies for states in the (n - 1)d8ns2 configuration are overestimated pronouncedly with these two methods, and this overestimation is more severe than those in the (n - 1)d9ns1 configuration. Error of EOM-CCSD on these excitation energies is generally larger than that of FSCCSD. On the other hand, relative energies of most of the states in the d8 configuration with respect to the lowest state in the same configuration are predicted reliably with EOM-DIP-CCSD, except for the 3P0 state of Hg2+ and states in Ir+. FSCCSD can provide reasonable relative energies for the several lowest states, while its error tends to be larger for higher states.
Collapse
Affiliation(s)
- Hewang Zhao
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
| | - Zhifan Wang
- School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China
| | - Minggang Guo
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
42
|
Pathak H, Sasmal S, Talukdar K, Nayak MK, Vaval N, Pal S. Relativistic double-ionization equation-of-motion coupled-cluster method: Application to low-lying doubly ionized states. J Chem Phys 2020; 152:104302. [PMID: 32171231 DOI: 10.1063/1.5140988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This article deals with the extension of the relativistic double-ionization equation-of-motion coupled-cluster (DI-EOMCC) method [H. Pathak et al. Phys. Rev. A 90, 010501(R) (2014)] for the molecular systems. The Dirac-Coulomb Hamiltonian with four-component spinors is considered to take care of the relativistic effects. The implemented method is employed to compute a few low-lying doubly ionized states of noble gas atoms (Ar, Kr, Xe, and Rn) and Cl2, Br2, HBr, and HI. Additionally, we presented results with two intermediate schemes in the four-component relativistic DI-EOMCC framework to understand the role of electron correlation. The computed double ionization spectra for the atomic systems are compared with the values from the non-relativistic DI-EOMCC method with spin-orbit coupling [Z. Wang et al. J. Chem. Phys. 142, 144109 (2015)] and the values from the National Institute of Science and Technology (NIST) database. Our atomic results are found to be in good agreement with the NIST values. Furthermore, the obtained results for the molecular systems agree well with the available experimental values.
Collapse
Affiliation(s)
- Himadri Pathak
- Electronic Structure Theory Group, Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sudip Sasmal
- Electronic Structure Theory Group, Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Kaushik Talukdar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Malaya K Nayak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Nayana Vaval
- Electronic Structure Theory Group, Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sourav Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
43
|
Denis M, Hao Y, Eliav E, Hutzler NR, Nayak MK, Timmermans RGE, Borschesvky A. Enhanced P,T-violating nuclear magnetic quadrupole moment effects in laser-coolable molecules. J Chem Phys 2020; 152:084303. [DOI: 10.1063/1.5141065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Malika Denis
- Faculty of Science and Engineering, Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Yongliang Hao
- Faculty of Science and Engineering, Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Ephraim Eliav
- School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Nicholas R. Hutzler
- Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| | - Malaya K. Nayak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rob G. E. Timmermans
- Faculty of Science and Engineering, Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Anastasia Borschesvky
- Faculty of Science and Engineering, Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
44
|
Nikoobakht B. Investigation of the valence ionization spectrum of chromium carbonyl using an ab initio quantum dynamical approach. J Chem Phys 2020; 152:064109. [PMID: 32061234 DOI: 10.1063/1.5130395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nuclear dynamics of the chromium carbonyl cation following an ionization process corresponding to the 2T2g ← 1A1g transition is studied theoretically, for the first time, using a fully quantal approach as well as high levels of the ab initio electronic structure and semiempirical density functional theory (DFT) methods. The photoelectron spectrum is calculated by the construction of a Hamiltonian model, in which the two totally symmetric modes ν19 (the Cr-C stretching mode) and ν39 (the C-O stretching mode) together with the spin-orbit (SO) coupling up to the zeroth-order SO splitting are treated. The potential energy curves along these two vibrational modes are computed by using the DFT. The simulated photoelectron spectrum is found to be in good agreement with the corresponding experimental one, leading to the conclusion that the potential energy surfaces and the diabatic population analysis are accurately determined. Our calculation confirms that the vibrational modes ν19 and ν39 are the vibrational progression of the valence ionization spectrum of the chromium carbonyl cation.
Collapse
|
45
|
Oleynichenko AV, Zaitsevskii A, Eliav E. Towards High Performance Relativistic Electronic Structure Modelling: The EXP-T Program Package. COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE 2020. [DOI: 10.1007/978-3-030-64616-5_33] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
Kozlov SV, Bormotova EA, Medvedev AA, Pazyuk EA, Stolyarov AV, Zaitsevskii A. A first principles study of the spin–orbit coupling effect in LiM (M = Na, K, Rb, Cs) molecules. Phys Chem Chem Phys 2020; 22:2295-2306. [DOI: 10.1039/c9cp06421d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both fully relativistic and scalar-state based perturbation models provided the spin–orbit functions of the LiM (M = Na, K, Rb, Cs) molecules at almost experimental level of confidence.
Collapse
Affiliation(s)
- S. V. Kozlov
- Department of Chemistry
- Lomonosov Moscow State University
- 119991 Moscow
- Russia
| | - E. A. Bormotova
- Department of Chemistry
- Lomonosov Moscow State University
- 119991 Moscow
- Russia
| | - A. A. Medvedev
- Department of Chemistry
- Lomonosov Moscow State University
- 119991 Moscow
- Russia
| | - E. A. Pazyuk
- Department of Chemistry
- Lomonosov Moscow State University
- 119991 Moscow
- Russia
| | - A. V. Stolyarov
- Department of Chemistry
- Lomonosov Moscow State University
- 119991 Moscow
- Russia
| | - A. Zaitsevskii
- Department of Chemistry
- Lomonosov Moscow State University
- 119991 Moscow
- Russia
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Institute”
| |
Collapse
|
47
|
Kervazo S, Réal F, Virot F, Severo Pereira Gomes A, Vallet V. Accurate Predictions of Volatile Plutonium Thermodynamic Properties. Inorg Chem 2019; 58:14507-14521. [DOI: 10.1021/acs.inorgchem.9b02096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sophie Kervazo
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton L8S 4M1, Canada
| | - Florent Réal
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| | - François Virot
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN) PSN-RES, Cadarache, Saint Paul Lez Durance 13115, France
| | | | - Valérie Vallet
- Univ. Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, F-59000 Lille, France
| |
Collapse
|
48
|
Cheng L. A study of non-iterative triples contributions in relativistic equation-of-motion coupled-cluster calculations using an exact two-component Hamiltonian with atomic mean-field spin-orbit integrals: Application to uranyl and other heavy-element compounds. J Chem Phys 2019; 151:104103. [DOI: 10.1063/1.5113796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
49
|
Nikoobakht B, Dreuw A, Köppel H. Excited state dynamics of the s-trans-1, 3-butadiene cation: An ab initio quantum dynamical analysis. J Chem Phys 2019; 151:104105. [DOI: 10.1063/1.5108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Andreas Dreuw
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
| | - Horst Köppel
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, INF 229, D-69120 Heidelberg, Germany
| |
Collapse
|
50
|
Finney BA, Peterson KA. Beyond chemical accuracy in the heavy p-block: The first ionization potentials and electron affinities of Ga-Kr, In-Xe, and Tl-Rn. J Chem Phys 2019; 151:024303. [PMID: 31301726 DOI: 10.1063/1.5110174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A relativistic coupled-cluster version of the Feller-Peterson-Dixon composite method has been used to accurately calculate the first ionization potentials (IPs) and electron affinities (EAs) of the post-d, p-block elements Ga-Rn. Complete basis set extrapolations including outer-core correlation at the CCSD(T) level of theory were combined with contributions from higher order electron correlation up to CCSDTQ, quantum electrodynamic effects (Lamb shift), and spin-orbit (SO) coupling including the Gaunt contribution. Several methods for including SO were investigated, in which all involved the four-component (4c) Dirac-Coulomb (DC) Hamiltonian. The treatment of SO coupling was the contribution that limited the final accuracy of the present results. In the cases where 4c-DC-CCSD(T) could be reliably used for the SO contributions, the final composite IPs and EAs agreed with the available experimental values to within an unsigned average error of just 0.16 and 0.20 kcal/mol, respectively. In all cases, the final IPs and EAs were within 1 kcal/mol of the available experimental values, except for the EAs of the group 13 elements (Ga, In, and Tl), where the currently accepted experimental values appear to be too large by as much as 4 kcal/mol. The values predicted in this work, which have estimated uncertainties of ±0.5 kcal/mol, are 5.25 (Ga), 7.69 (In), and 7.39 (Tl) kcal/mol. For the EAs of Po and At, which do not have experimental values, the current calculations predict values of 34.2 and 55.8 kcal/mol with estimated uncertainties of ±0.6 and ±0.3 kcal/mol, respectively.
Collapse
Affiliation(s)
- Brian A Finney
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| |
Collapse
|