1
|
Zhang Z, Gatti F, Zhang DH. Full-dimensional quantum mechanical calculations of the reaction probability of the H + CH 4 reaction based on a mixed Jacobi and Radau description. J Chem Phys 2020; 152:201101. [PMID: 32486690 DOI: 10.1063/5.0009721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A full-dimensional time-dependent wave packet study using mixed polyspherical Jacobi and Radau coordinates for the title reaction has been reported. The non-reactive moiety CH3 has been described using three Radau vectors, whereas two Jacobi vectors have been used for the bond breaking/formation process. A potential-optimized discrete variable representation basis has been employed to describe the vibrational coordinates of the reagent CH4. About one hundred billion basis functions have been necessary to achieve converged results. The reaction probabilities for some initial vibrational states are given. A comparison between the present approach and other methods, including reduced and full-dimensional ones, is also presented.
Collapse
Affiliation(s)
- Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Fabien Gatti
- ISMO, Institut des Sciences Moléculaires d'Orsay - UMR 8214 CNRS/Université Paris-Saclay, F-91405 Orsay, France
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
2
|
Ellerbrock R, Manthe U. H+CH4→ H2+ CH3 initial state-selected reaction probabilities on different potential energy surfaces. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2016.08.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Vikár A, Nagy T, Lendvay G. Testing the Palma-Clary Reduced Dimensionality Model Using Classical Mechanics on the CH4 + H → CH3 + H2 Reaction. J Phys Chem A 2016; 120:5083-93. [PMID: 26918703 DOI: 10.1021/acs.jpca.6b00346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Application of exact quantum scattering methods in theoretical reaction dynamics of bimolecular reactions is limited by the complexity of the equations of nuclear motion to be solved. Simplification is often achieved by reducing the number of degrees of freedom to be explicitly handled by freezing the less important spectator modes. The reaction cross sections obtained in reduced-dimensionality (RD) quantum scattering methods can be used in the calculation of rate coefficients, but their physical meaning is limited. The accurate test of the performance of a reduced-dimensionality method would be a comparison of the RD cross sections with those obtained in accurate full-dimensional (FD) calculations, which is not feasible because of the lack of complete full-dimensional results. However, classical mechanics allows one to perform reaction dynamics calculations using both the RD and the FD model. In this paper, an RD versus FD comparison is made for the 8-dimensional Palma-Clary model on the example of four isotopologs of the CH4 + H → CH3 + H2 reaction, which has 12 internal dimensions. In the Palma-Clary model, the only restriction is that the methyl group is confined to maintain C3v symmetry. Both RD and FD opacity and excitation functions as well as differential cross sections were calculated using the quasiclassical trajectory method. The initial reactant separation has been handled according to our one-period averaging method [ Nagy et al. J. Chem. Phys. 2016, 144, 014104 ]. The RD and FD excitation functions were found to be close to each other for some isotopologs, but in general, the RD reactivity parameters are lower than the FD reactivity parameters beyond statistical error, and for one of the isotopologs, the deviation is significant. This indicates that the goodness of RD cross sections cannot be taken for granted.
Collapse
Affiliation(s)
- Anna Vikár
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Tibor Nagy
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - György Lendvay
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
4
|
Guo H, Liu K. Control of chemical reactivity by transition-state and beyond. Chem Sci 2016; 7:3992-4003. [PMID: 30155041 PMCID: PMC6013787 DOI: 10.1039/c6sc01066k] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/06/2016] [Indexed: 11/21/2022] Open
Abstract
It has been long established that the transition state for an activated reaction controls the overall reactivity, serving as the bottleneck for reaction flux. However, the role of the transition state in regulating quantum state resolved reactivity has only been addressed more recently, thanks to advances in both experimental and theoretical techniques. In this perspective, we discuss some recent advances in understanding mode-specific reaction dynamics in bimolecular reactions, mainly focusing on the X + H2O/CH4 (X = H, F, Cl, and O(3P)) systems, extensively studied in our groups. These advances shed valuable light on the importance of the transition state in mode-specific and steric dynamics of these prototypical reactions. It is shown that many mode-specific phenomena can be understood in terms of a transition-state based model, which assumes in the sudden limit that the ability of a reactant mode for promoting the reaction stems from its coupling with the reaction coordinate at the transition state. Yet, in some cases the long-range anisotropic interactions in the entrance (or exit) valley, which govern how the trajectories reach (or leave) the transition state, also come into play, thus modifying the reactive outcomes.
Collapse
Affiliation(s)
- Hua Guo
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , USA .
| | - Kopin Liu
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 10617 , Taiwan .
- Department of Physics , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|
5
|
Yan P, Wang Y, Li Y, Wang D. A seven-degree-of-freedom, time-dependent quantum dynamics study on the energy efficiency in surmounting the central energy barrier of the OH + CH3 → O + CH4 reaction. J Chem Phys 2015; 142:164303. [DOI: 10.1063/1.4918981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pengxiu Yan
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yuping Wang
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yida Li
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Dunyou Wang
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
6
|
Welsch R, Manthe U. Full-dimensional and reduced-dimensional calculations of initial state-selected reaction probabilities studying the H + CH4 → H2 + CH3 reaction on a neural network PES. J Chem Phys 2015; 142:064309. [DOI: 10.1063/1.4906825] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ralph Welsch
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany
| |
Collapse
|
7
|
Zhang Z, Zhang DH. Effects of reagent rotational excitation on the H + CHD3 → H2 + CD3 reaction: A seven dimensional time-dependent wave packet study. J Chem Phys 2014; 141:144309. [DOI: 10.1063/1.4897308] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
8
|
Zhang Z, Chen J, Liu S, Zhang DH. Accuracy of the centrifugal sudden approximation in the H + CHD3 → H2 + CD3 reaction. J Chem Phys 2014; 140:224304. [DOI: 10.1063/1.4881517] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Shu Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
9
|
Jiang B, Guo H. Mode Specificity, Bond Selectivity, and Product Energy Disposal in X + CH4/CHD3(X=H, F, O(3P), Cl, and OH) Hydrogen Abstraction Reactions: Perspective from Sudden Vector Projection Model. J CHIN CHEM SOC-TAIP 2014. [DOI: 10.1002/jccs.201400158] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Pan H, Yang J, Zhang D, Shuai Q, Dai D, Wu G, Jiang B, Yang X. Effect of antisymmetric C–H stretching excitation on the dynamics of O(1D) + CH4 → OH + CH3. J Chem Phys 2014. [DOI: 10.1063/1.4871135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Welsch R, Manthe U. Fast Shepard interpolation on graphics processing units: Potential energy surfaces and dynamics for H + CH4 → H2 + CH3. J Chem Phys 2013; 138:164118. [DOI: 10.1063/1.4802059] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
Welsch R, Manthe U. Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 → H2 + CH3 rate constants for different potentials. J Chem Phys 2012; 137:244106. [DOI: 10.1063/1.4772585] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Liu R, Xiong H, Yang M. An eight-dimensional quantum mechanical Hamiltonian for X + YCZ3 system and its applications to H + CH4 reaction. J Chem Phys 2012; 137:174113. [DOI: 10.1063/1.4764358] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
LI YIM, ZHANG JOHNZH. QUANTITATIVE QUANTUM DYNAMICS CALCULATION OF H2 + CH3 → H + CH4 REACTION. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2012. [DOI: 10.1142/s0219633602000026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report in this paper quantum dynamics calculation of state-selected reaction probabilities for a benchmark chemical reaction H 2 + CH 3 → H + CH 4 on an ab initio potential energy surface. The quantum dynamics calculation is based on the recently developed semirigid vibrating rotor target (SVRT) model and involves six degrees of freedom. The present result is the first such high-level quantum dynamics calculation of microscopic reaction probability for a chemical reaction between two molecules with at least one of the reagents being larger than a diatomic molecule.
Collapse
Affiliation(s)
- YI M. LI
- Department of Chemistry, New York University, NY 10003, New York
| | - JOHN Z. H. ZHANG
- Department of Chemistry, New York University, NY 10003, New York
| |
Collapse
|
15
|
Zhou Y, Wang C, Zhang DH. Effects of reagent vibrational excitation on the dynamics of the H + CHD3 → H2 + CD3 reaction: A seven-dimensional time-dependent wave packet study. J Chem Phys 2011; 135:024313. [DOI: 10.1063/1.3609923] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Zhou Y, Fu B, Wang C, Collins MA, Zhang DH. Ab initio potential energy surface and quantum dynamics for the H + CH4 → H2 + CH3 reaction. J Chem Phys 2011; 134:064323. [DOI: 10.1063/1.3552088] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Schiffel G, Manthe U. A transition state view on reactive scattering: Initial state-selected reaction probabilities for the H+CH4→H2+CH3 reaction studied in full dimensionality. J Chem Phys 2010; 133:174124. [DOI: 10.1063/1.3489409] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Ohoyama H. Multidimensional molecular steric opacity function for XeCl*(B, C) formation in the oriented Xe* (³P₂, MJ = 2) + oriented CCl₃F reaction. J Phys Chem A 2010; 114:11386-92. [PMID: 20919716 DOI: 10.1021/jp104314s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The steric effect for the XeCl*(B, C) formations in the oriented Xe* (³P₂, MJ = 2) + oriented CCl₃F reaction has been observed as a function of the mutual configuration between the molecular orientation and the atomic orbital alignment in the collision frame. Molecular steric opacity functions have been determined as a function of the atomic orbital alignment (M(L)') in the collision frame. The XeCl*(B, C) channels show similar molecular steric opacity functions at M(L)' = 0 but not at |M(L)'| = 1. The large molecular alignment dependence (i.e., the reactivity of the Cl₃ end and the F end is comparable, but a very poor reactivity for the sideway) is recognized for the XeCl*(B, C) channels except for the XeCl*(C) channel at |M(L)'| = 1, which shows an almost isotropic molecular orientation dependence. The M(L)' selectivity is different between the XeCl*(B, C) channels. At the molecular axis direction, the XeCl*(B) channel has little M(L)' selectivity whereas the XeCl*(C) channel is significantly favorable at M(L)' = 0. On the other hand, |M(L)'| = 1 is favorable at the sideway for the XeCl*(B, C) channels.
Collapse
Affiliation(s)
- H Ohoyama
- Department of Chemistry, Graduate School of Science, Osaka UniVersity, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
19
|
Schiffel G, Manthe U. Communications: A rigorous transition state based approach to state-specific reaction dynamics: Full-dimensional calculations for H+CH4→H2+CH3. J Chem Phys 2010; 132:191101. [DOI: 10.1063/1.3428622] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Chu T, Han K, Espinosa-Garcia J. A five-dimensional quantum dynamics study of the F(P2)+CH4 reaction. J Chem Phys 2009; 131:244303. [DOI: 10.1063/1.3273139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Andersson S, Nyman G, Arnaldsson A, Manthe U, Jónsson H. Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the H + CH4 Reaction Rate. J Phys Chem A 2009; 113:4468-78. [DOI: 10.1021/jp811070w] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stefan Andersson
- Department of Chemistry, Physical Chemistry, University of Gothenburg, SE-41296 Gothenburg, Sweden, Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavík, Iceland, and Theoretische Chemie, Universität Bielefeld, Universitätstrasse 25, D-33615 Bielefeld, Germany
| | - Gunnar Nyman
- Department of Chemistry, Physical Chemistry, University of Gothenburg, SE-41296 Gothenburg, Sweden, Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavík, Iceland, and Theoretische Chemie, Universität Bielefeld, Universitätstrasse 25, D-33615 Bielefeld, Germany
| | - Andri Arnaldsson
- Department of Chemistry, Physical Chemistry, University of Gothenburg, SE-41296 Gothenburg, Sweden, Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavík, Iceland, and Theoretische Chemie, Universität Bielefeld, Universitätstrasse 25, D-33615 Bielefeld, Germany
| | - Uwe Manthe
- Department of Chemistry, Physical Chemistry, University of Gothenburg, SE-41296 Gothenburg, Sweden, Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavík, Iceland, and Theoretische Chemie, Universität Bielefeld, Universitätstrasse 25, D-33615 Bielefeld, Germany
| | - Hannes Jónsson
- Department of Chemistry, Physical Chemistry, University of Gothenburg, SE-41296 Gothenburg, Sweden, Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavík, Iceland, and Theoretische Chemie, Universität Bielefeld, Universitätstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
22
|
Yang M. Full dimensional time-dependent quantum dynamics study of the H+NH3→H2+NH2 reaction. J Chem Phys 2008; 129:064315. [DOI: 10.1063/1.2967854] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Albu TV, Espinosa-García J, Truhlar DG. Computational Chemistry of Polyatomic Reaction Kinetics and Dynamics: The Quest for an Accurate CH5 Potential Energy Surface. Chem Rev 2007; 107:5101-32. [DOI: 10.1021/cr078026x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Titus V. Albu
- Department of Chemistry, Box 5055, Tennessee Technological University, Cookeville, Tennessee 38505
| | | | - Donald G. Truhlar
- Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431
| |
Collapse
|
24
|
Wang D, Huo WM. An eight-degree-of-freedom, time-dependent quantum dynamics study for the H2+C2H reaction on a new modified potential energy surface. J Chem Phys 2007; 127:154304. [DOI: 10.1063/1.2794757] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Zhang XQ, Cui Q, Zhang JZH, Han KL. Quantum dynamics study of H+NH3→H2+NH2 reaction. J Chem Phys 2007; 126:234304. [PMID: 17600417 DOI: 10.1063/1.2745796] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report in this paper a quantum dynamics study for the reaction H+NH3-->NH2+H2 on the potential energy surface of Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The quantum dynamics calculation employs the semirigid vibrating rotor target model [J. Z. H. Zhang, J. Chem. Phys. 111, 3929 (1999)] and time-dependent wave packet method to propagate the wave function. Initial state-specific reaction probabilities are obtained, and an energy correction scheme is employed to account for zero point energy changes for the neglected degrees of freedom in the dynamics treatment. Tunneling effect is observed in the energy dependency of reaction probability, similar to those found in H+CH4 reaction. The influence of rovibrational excitation on reaction probability and stereodynamical effect are investigated. Reaction rate constants from the initial ground state are calculated and are compared to those from the transition state theory and experimental measurement.
Collapse
Affiliation(s)
- Xu Qiang Zhang
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | | | |
Collapse
|
26
|
Yang M, Corchado JC. Seven-dimensional quantum dynamics study of the H+NH3-->H2+NH2 reaction. J Chem Phys 2007; 126:214312. [PMID: 17567201 DOI: 10.1063/1.2739512] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Initial state-selected time-dependent wave packet dynamics calculations have been performed for the H+NH3-->H2+NH2 reaction using a seven-dimensional model and an analytical potential energy surface based on the one developed by Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The model assumes that the two spectator NH bonds are fixed at their equilibrium values. The total reaction probabilities are calculated for the initial ground and seven excited states of NH3 with total angular momentum J=0. The converged cross sections for the reaction are also reported for these initial states. Thermal rate constants are calculated for the temperature range 200-2000 K and compared with transition state theory results and the available experimental data. The study shows that (a) the total reaction probabilities are overall very small, (b) the symmetric and asymmetric NH stretch excitations enhance the reaction significantly and almost all of the excited energy deposited was used to reduce the reaction threshold, (c) the excitation of the umbrella and bending motion have a smaller contribution to the enhancement of reactivity, (d) the main contribution to the thermal rate constants is thought to come from the ground state at low temperatures and from the stretch excited states at high temperatures, and (e) the calculated thermal rate constants are three to ten times smaller than the experimental data and transition state theory results.
Collapse
Affiliation(s)
- Minghui Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | | |
Collapse
|
27
|
van Harrevelt R, Nyman G, Manthe U. Accurate quantum calculations of the reaction rates for H∕D+CH4. J Chem Phys 2007; 126:084303. [PMID: 17343444 DOI: 10.1063/1.2464102] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In previous work [T. Wu, H. J. Werner, and U. Manthe, Science 306, 2227 (2004)], accurate quantum reaction rate calculations of the rate constant for the H+CH4-->CH3+H2 reaction have been presented. Both the electronic structure calculations and the nuclear dynamics calculations are converged with respect to the basis sets employed. In this paper, the authors apply the same methodology to an isotopic variant of this reaction: D+CH4-->CH3+HD. Accurate rate constants are presented for temperatures between 250 and 400 K. For temperatures between 400 and 800 K, they use a harmonic extrapolation to obtain approximate rate constants for H/D+CH4. The calculations suggest that the experimentally reported rate constants for D+CH4 are about a factor of 10-20 too high. For H+CH4, more accurate experiments are available and agreement is much better: the difference is less than a factor of 2.6. The kinetic isotope effect for the H/D+CH4 reactions is studied and compared with experiment and transition state theory (TST) calculations. Harmonic TST was found to provide a good description of the kinetic isotope effect.
Collapse
Affiliation(s)
- Rob van Harrevelt
- Theoretische Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | | | |
Collapse
|
28
|
Wang D. A full dimensional, nine-degree-of-freedom, time-dependent quantum dynamics study for the H2+C2H reaction. J Chem Phys 2006; 124:201105. [PMID: 16774308 DOI: 10.1063/1.2206180] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A full dimensional, nine-degree-of-freedom (9DOF), time-dependent quantum dynamics wave packet approach is presented for the study of the H2+C2H-->H+C2H2 reaction system. This is the first full dimensional quantum dynamics study for a diatom-triatom reaction system. The effects of the initial vibrational and rotational excitations of the reactants on the reactivity of this reaction are investigated. This study shows that vibrational excitations of H2 enhance the reactivity; whereas, the vibrational excitations of C2H only have a small effect on the reaction probability. In addition, the bending excitations of C2H, compared to the ground state reaction probability, hinder the reactivity. Comparison of the ground state reaction probabilities of the 9DOF and 8DOF shows the reaction probability from the full dimensional calculation is larger, with more prominent resonance features.
Collapse
Affiliation(s)
- Dunyou Wang
- Eloret, NASA Ames Research Center, MS T27B-1, Moffett Field, California 94035-1000, USA.
| |
Collapse
|
29
|
Wu T, Werner HJ, Manthe U. Accurate potential energy surface and quantum reaction rate calculations for the H+CH4→H2+CH3 reaction. J Chem Phys 2006; 124:164307. [PMID: 16674135 DOI: 10.1063/1.2189223] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Calculations for the cumulative reaction probability N(E) (for J=0) and the thermal rate constant k(T) of the H+CH(4)-->H(2)+CH(3) reaction are presented. Accurate electronic structure calculations and a converged Shepard-interpolation approach are used to construct a potential energy surface which is specifically designed to allow the precise calculation of k(T) and N(E). Accurate quantum dynamics calculations employing flux correlation functions and multiconfigurational time-dependent Hartree wave packet propagation compute N(E) and k(T) based on this potential energy surface. The present work describes in detail the various convergence test performed to investigate the accuracy of the calculations at each step. These tests demonstrate the predictive power of the present calculations. In addition, approximate approaches for reaction rate calculations are discussed. A quite accurate approximation can be obtained from a potential energy surface which includes only interpolation points on the minimum energy path.
Collapse
Affiliation(s)
- Tao Wu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | | | | |
Collapse
|
30
|
Wang D. An eight-degree-of-freedom quantum dynamics study for the H2+C2H system. J Chem Phys 2005; 123:194302. [PMID: 16321083 DOI: 10.1063/1.2122707] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An eight-degree-of-freedom (8DOF) time-dependent wave-packet approach has been developed to study the H(2)+C(2)H-->H+C(2)H(2) reaction system. The 8DOF model is obtained by fixing one of the Jacobi torsion angle in the nine-degree-of-freedom AB+CDE reaction system. This study is an extension of the previous seven-degree-of-freedom (7DOF) computation [J. Chem. Phys. 119, 12057 (2003)] of this reaction system. This study shows that vibrational excitations of H(2) enhance the reaction probability, whereas the stretching vibrational excitations of C(2)H have only a small effect on the reactivity. Furthermore, the bending excitation of C(2)H, compared to the ground-state reaction probability, hinders the reactivity. A comparison of the rate constant between the 7DOF calculation and the present 8DOF results has been made. The theoretical and experimental results agree with each other very well when the present 8DOF results are adjusted to account for the lower transition state barrier heights found in recent ab initio calculations.
Collapse
Affiliation(s)
- Dunyou Wang
- Eloret, National Aeronautics and Space Administration (NASA) Ames Research Center, MS T27B-1, Moffett Field, CA 94035-1000, USA.
| |
Collapse
|
31
|
Camden JP, Bechtel HA, Brown DJA, Zare RN. Effects of C–H stretch excitation on the H+CH4 reaction. J Chem Phys 2005; 123:134301. [PMID: 16223282 DOI: 10.1063/1.2034507] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have investigated the effects of C-H stretching excitation on the H+CH4-->CH3+H2 reaction dynamics using the photo-LOC technique. The CH3 product vibrational state and angular distribution are measured for the reaction of fast H atoms with methane excited in either the antisymmetric stretching fundamental (nu3=1) or first overtone (nu3=2) with a center-of-mass collision energy of Ecoll ranging from 1.52 to 2.20 eV. We find that vibrational excitation of the nu3=1 mode enhances the overall reaction cross section by a factor of 3.0+/-1.5 for Ecoll=1.52 eV, and this enhancement factor is approximately constant over the 1.52-2.20-eV collision energy range. A local-mode description of the CH4 stretching vibration, in which the C-H oscillators are uncoupled, is used to describe the observed state distributions. In this model, the interaction of the incident H atom with either a stretched or an unstretched C-H oscillator determines the vibrational state of the CH3 product. We also compare these results to the similar quantities obtained previously for the Cl+CH4-->CH3+HCl reaction at Ecoll=0.16 eV [Z. H. Kim, H. A. Bechtel, and R. N. Zare, J. Chem. Phys. 117, 3232 (2002); H. A. Bechtel, J. P. Camden, D. J. A. Brown, and R. N. Zare, ibid. 120, 5096 (2004)] in an attempt to elucidate the differences in reactivity for the same initially prepared vibration.
Collapse
Affiliation(s)
- Jon P Camden
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | | | |
Collapse
|
32
|
Chakraborty A, Truhlar DG, Bowman JM, Carter S. Calculation of converged rovibrational energies and partition function for methane using vibrational–rotational configuration interaction. J Chem Phys 2004; 121:2071-84. [PMID: 15260761 DOI: 10.1063/1.1759627] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rovibration partition function of CH4 was calculated in the temperature range of 100-1000 K using well-converged energy levels that were calculated by vibrational-rotational configuration interaction using the Watson Hamiltonian for total angular momenta J = 0-50 and the MULTIMODE computer program. The configuration state functions are products of ground-state occupied and virtual modals obtained using the vibrational self-consistent field method. The Gilbert and Jordan potential energy surface was used for the calculations. The resulting partition function was used to test the harmonic oscillator approximation and the separable-rotation approximation. The harmonic oscillator, rigid-rotator approximation is in error by a factor of 2.3 at 300 K, but we also propose a separable-rotation approximation that is accurate within 2% from 100 to 1000 K.
Collapse
Affiliation(s)
- Arindam Chakraborty
- Department of Chemistry, University of Minnesota, Minneapolis 55455-0431, USA.
| | | | | | | |
Collapse
|
33
|
Wang D. Quantum dynamics scattering study of AB+CDE reactions: A seven-dimensional treatment for the H2+C2H reaction. J Chem Phys 2003. [DOI: 10.1063/1.1624831] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
34
|
Wu T, Manthe U. A potential energy surface construction scheme for accurate reaction rate calculations: General approach and a test for the H+CH4→H2+CH3 reaction. J Chem Phys 2003. [DOI: 10.1063/1.1577328] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
35
|
Wang D. Quantum dynamics study of the isotopic effect on capture reactions: HD, D2+CH3. J Chem Phys 2003. [DOI: 10.1063/1.1529178] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Wang ML, Zhang JZH. Erratum: “Stereodynamics and rovibrational effect for H+CH4(v,j,K,n)→H2+CH3 reaction” [J. Chem. Phys. 116, 6497 (2002)]. J Chem Phys 2002. [DOI: 10.1063/1.1519004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
37
|
|
38
|
Xiang Y, Zhang JZH, Wang DY. Semirigid vibrating rotor target model for CH4 dissociation on a Ni(111) surface. J Chem Phys 2002. [DOI: 10.1063/1.1509062] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
39
|
Wang ML, Zhang JZH. Generalized semirigid vibrating rotor target model for atom–poly reaction: Inclusion of umbrella mode for H+CH4 reaction. J Chem Phys 2002. [DOI: 10.1063/1.1494782] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|