1
|
Cochereau R, Voisin H, Solé-Jamault V, Novales B, Davy J, Jamme F, Renard D, Boire A. Influence of pH and lipid membrane on the liquid-liquid phase separation of wheat γ-gliadin in aqueous conditions. J Colloid Interface Sci 2024; 668:252-263. [PMID: 38678881 DOI: 10.1016/j.jcis.2024.04.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
Protein body (PB) formation in wheat seeds is a critical process influencing seed content and nutritional quality. In this study, we investigate the potential mechanisms governing PB formation through an in vitro approach, focusing on γ-gliadin, a key wheat storage protein. We used a microfluidic technique to encapsulate γ-gliadin within giant unilamellar vesicles (GUVs) and tune the physicochemical conditions in a controlled and rapid way. We examined the influence of pH and protein concentration on LLPS and protein-membrane interactions using various microscopy and spectroscopy techniques. We showed that γ-gliadin encapsulated in GUVs can undergo a pH-triggered liquid-liquid phase separation (LLPS) by two distinct mechanisms depending on the γ-gliadin concentration. At low protein concentrations, γ-gliadins phase separate by a nucleation and growth-like process, while, at higher protein concentration and pH above 6.0, γ-gliadin formed a bi-continuous phase suggesting a spinodal decomposition-like mechanism. Fluorescence and microscopy data suggested that γ-gliadin dense phase exhibited affinity for the GUV membrane, forming a layer at the interface and affecting the reversibility of the phase separation.
Collapse
Affiliation(s)
| | | | | | - Bruno Novales
- INRAE, UR 1268 BIA, F-44300 Nantes, France; INRAE, PROBE/CALIS Research Infrastructures, BIBS Facility, F-44300 Nantes, France
| | | | - Frédéric Jamme
- DISCO Beamline, SOLEIL Synchrotron, 91192 Gif-sur-Yvette, France
| | | | | |
Collapse
|
2
|
Effects of selective distribution and migration of poly(methyl methacrylate)-grafted nanoclays on the phase behavior of poly(methyl methacrylate)/poly (styrene-co-acrylonitrile) blends. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Carmona P, Röding M, Särkkä A, von Corswant C, Olsson E, Lorén N. Structure formation and coarsening kinetics of phase-separated spin-coated ethylcellulose/hydroxypropylcellulose films. SOFT MATTER 2022; 18:3206-3217. [PMID: 35383800 DOI: 10.1039/d2sm00113f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porous phase-separated ethylcellulose/hydroxypropylcellulose (EC/HPC) films are used to control drug transport from pharmaceutical pellets. The drug transport rate is determined by the structure of the porous films that are formed as water-soluble HPC leaches out. However, a detailed understanding of the evolution of the phase-separated structure in the films is lacking. In this work, we have investigated EC/HPC films produced by spin-coating, mimicking the industrial fluidized bed spraying. The aim was to investigate film structure evolution and coarsening kinetics during solvent evaporation. The structure evolution was characterized using confocal laser scanning microscopy and image analysis. The effect of the EC:HPC ratio (15 to 85 wt% HPC) on the structure evolution was determined. Bicontinuous structures were found for 30 to 40 wt% HPC. The growth of the characteristic length scale followed a power law, L(t) ∼ t(n), with n ∼ 1 for bicontinuous structures, and n ∼ 0.45-0.75 for discontinuous structures. The characteristic length scale after kinetic trapping ranged between 3.0 and 6.0 μm for bicontinuous and between 0.6 and 1.6 μm for discontinuous structures. Two main coarsening mechanisms could be identified: interfacial tension-driven hydrodynamic growth for bicontinuous structures and diffusion-driven coalescence for discontinuous structures. The 2D in-plane interface curvature analysis showed that the mean curvature decreased as a function of time for bicontinuous structures, confirming that interfacial tension is driving the growth. The findings of this work provide a good understanding of the mechanisms responsible for morphology development and open for further tailoring of thin EC/HPC film structures for controlled drug release.
Collapse
Affiliation(s)
- Pierre Carmona
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Magnus Röding
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University, Gothenburg, Sweden
| | - Aila Särkkä
- Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University, Gothenburg, Sweden
| | - Christian von Corswant
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Eva Olsson
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Niklas Lorén
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
4
|
Carmona P, Röding M, Särkkä A, von Corswant C, Olsson E, Lorén N. Structure evolution during phase separation in spin-coated ethylcellulose/hydroxypropylcellulose films. SOFT MATTER 2021; 17:3913-3922. [PMID: 33710242 DOI: 10.1039/d1sm00044f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous phase-separated films made of ethylcellulose (EC) and hydroxypropylcellulose (HPC) are commonly used for controlled drug release. The structure of these thin films is controlling the drug transport from the core to the surrounding liquids in the stomach or intestine. However, detailed understanding of the time evolution of these porous structures as they are formed remains elusive. In this work, spin-coating, a widely applied technique for making thin uniform polymer films, was used to mimic the industrial manufacturing process. The focus of this work was on understanding the structure evolution of phase-separated spin-coated EC/HPC films. The structure evolution was determined using confocal laser scanning microscopy (CLSM) and image analysis. In particular, we determined the influence of spin-coating parameters and EC : HPC ratio on the final phase-separated structure and the film thickness. The film thickness was determined by profilometry and it influences the ethanol solvent evaporation rate and thereby the phase separation kinetics. The spin speed was varied between 1000 and 10 000 rpm and the ratio of EC : HPC in the polymer blend was varied between 78 : 22 wt% and 40 : 60 wt%. The obtained CLSM micrographs showed phase separated structures, typical for the spinodal decomposition phase separation mechanism. By using confocal laser scanning microscopy combined with Fourier image analysis, we could extract the characteristic length scale of the phase-separated final structure. Varying spin speed and EC : HPC ratio gave us precise control over the characteristic length scale and the thickness of the film. The results showed that the characteristic length scale increases with decreasing spin speed and with increasing HPC ratio. The thickness of the spin-coated film decreases with increasing spin speed. It was found that the relation between film thickness and spin speed followed the Meyerhofer equation with an exponent close to 0.5. Furthermore, good correlations between thickness and spin speed were found for the compositions 22 wt% HPC, 30 wt% HPC and 45 wt% HPC. These findings give a good basis for understanding the mechanisms responsible for the morphology development and increase the possibilities to tailor thin EC/HPC film structures.
Collapse
Affiliation(s)
- Pierre Carmona
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Magnus Röding
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University Gothenburg, Gothenburg, Sweden
| | - Aila Särkkä
- Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University Gothenburg, Gothenburg, Sweden
| | - Christian von Corswant
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Eva Olsson
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Niklas Lorén
- Unit Product Design, Department Agriculture and Food, Division Bioeconomy and Health, RISE Research Institute of Sweden, Gothenburg, Sweden.
- Division Nano-and BioPhysics, Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
5
|
Boire A, Sanchez C, Morel MH, Lettinga MP, Menut P. Dynamics of liquid-liquid phase separation of wheat gliadins. Sci Rep 2018; 8:14441. [PMID: 30262869 PMCID: PMC6160421 DOI: 10.1038/s41598-018-32278-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/28/2018] [Indexed: 02/08/2023] Open
Abstract
During wheat seeds development, storage proteins are synthetized and subsequently form dense protein phases, also called Protein Bodies (PBs). The mechanisms of PBs formation and the supramolecular assembly of storage proteins in PBs remain unclear. In particular, there is an apparent contradiction between the low solubility in water of storage proteins and their high local dynamics in dense PBs. Here, we probe the interplay between short-range attraction and long-range repulsion of a wheat gliadin isolate by investigating the dynamics of liquid-liquid phase separation after temperature quench. We do so using time-resolved small angle light scattering, phase contrast microscopy and rheology. We show that gliadins undergo liquid-liquid phase separation through Nucleation and Growth or Spinodal Decomposition depending on the quench depth. They assemble into dense phases but remain in a liquid-like state over an extended range of temperatures and concentrations. The analysis of phase separation kinetics reveals that the attraction strength of gliadins is in the same order of magnitude as other proteins. We discuss the respective role of competing interactions, protein intrinsic disorder, hydration and polydispersity in promoting local dynamics and providing this liquid-like behavior despite attractive forces.
Collapse
Affiliation(s)
- Adeline Boire
- UMR IATE, Université de Montpellier, Montpellier SupAgro, INRA, CIRAD, 2, Place Viala, 34060, Montpellier Cedex 1, France. .,INRA, UR1268 Biopolymers Interactions Assemblies, 44300, Nantes, France.
| | - Christian Sanchez
- UMR IATE, Université de Montpellier, Montpellier SupAgro, INRA, CIRAD, 2, Place Viala, 34060, Montpellier Cedex 1, France
| | - Marie-Hélène Morel
- UMR IATE, INRA, Université de Montpellier, Montpellier SupAgro, CIRAD, 2, Place Viala, 34060, Montpellier Cedex 1, France
| | - Minne Paul Lettinga
- Soft Condensed Matter Group ICS3, Jülich Forschungscentrum, Jülich, Germany.,Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, B-3001, Leuven, Belgium
| | - Paul Menut
- UMR IATE, Université de Montpellier, Montpellier SupAgro, INRA, CIRAD, 2, Place Viala, 34060, Montpellier Cedex 1, France.,Ingénierie Procédés Aliments, AgroParisTech, INRA, Université Paris-Saclay, 91300, Massy, France
| |
Collapse
|
6
|
Chatsisvili N, Philipse AP, Loppinet B, Tromp RH. Colloidal zein particles at water-water interfaces. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.10.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Bauer JL, Liu Y, Kurian MJ, Swan JW, Furst EM. Coarsening mechanics of a colloidal suspension in toggled fields. J Chem Phys 2015; 143:074901. [DOI: 10.1063/1.4927563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jonathan L. Bauer
- Department of Chemical and Biomolecular Engineering, Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, Delaware 19716, USA
| | - Yifei Liu
- Department of Chemical and Biomolecular Engineering, Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, Delaware 19716, USA
| | - Martin J. Kurian
- Department of Chemical and Biomolecular Engineering, Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, Delaware 19716, USA
| | - James W. Swan
- Department of Chemical and Biomolecular Engineering, Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, Delaware 19716, USA
| | - Eric M. Furst
- Department of Chemical and Biomolecular Engineering, Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
8
|
Khademzadeh Yeganeh J, Goharpey F, Moghimi E, Petekidis G, Foudazi R. Manipulating the kinetics and mechanism of phase separation in dynamically asymmetric LCST blends by nanoparticles. Phys Chem Chem Phys 2015; 17:27446-61. [DOI: 10.1039/c5cp04042f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The addition of nanoparticles in dynamically asymmetric LCST blends is used to induce the preferred phase-separating morphology by tuning the dynamic asymmetry, and to control the kinetics of phase separation by slowing down (or even arresting) the domain growth.
Collapse
Affiliation(s)
| | - F. Goharpey
- Department of Polymer Engineering
- Amirkabir University of Technology
- Tehran
- Iran
| | - E. Moghimi
- IESL-FORTH and Department of Material Science and Technology
- University of Crete
- GR-711 10 Heraklion
- Greece
| | - G. Petekidis
- IESL-FORTH and Department of Material Science and Technology
- University of Crete
- GR-711 10 Heraklion
- Greece
| | - R. Foudazi
- Department of Chemical and Materials Engineering
- New Mexico State University
- Las Cruces
- USA
| |
Collapse
|
9
|
|
10
|
Firoozmand H, Murray BS, Dickinson E. Microstructure and rheology of phase-separated gels of gelatin+oxidized starch. Food Hydrocoll 2009. [DOI: 10.1016/j.foodhyd.2008.07.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Fransson S, Lorén N, Altskär A, Hermansson AM. Effect of Confinement and Kinetics on the Morphology of Phase Separating Gelatin-Maltodextrin Droplets. Biomacromolecules 2009; 10:1446-53. [DOI: 10.1021/bm900049a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sophia Fransson
- SIK, The Swedish Institute for Food and Biotechnology, Box 5401, SE-402 29 Gothenburg, Sweden
| | - Niklas Lorén
- SIK, The Swedish Institute for Food and Biotechnology, Box 5401, SE-402 29 Gothenburg, Sweden
| | - Annika Altskär
- SIK, The Swedish Institute for Food and Biotechnology, Box 5401, SE-402 29 Gothenburg, Sweden
| | - Anne-Marie Hermansson
- SIK, The Swedish Institute for Food and Biotechnology, Box 5401, SE-402 29 Gothenburg, Sweden
| |
Collapse
|
12
|
Firoozmand H, Murray BS, Dickinson E. Interfacial structuring in a phase-separating mixed biopolymer solution containing colloidal particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:1300-1305. [PMID: 19138064 DOI: 10.1021/la8037389] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report confocal microscopy observations of the spatial distribution of monodisperse charge-stabilized colloidal particles (amphoteric polystyrene latex) incorporated within a spinodal-type phase-separating system of mixed biopolymers (gelatin + oxidized starch). Images from samples aged at 40 degrees C demonstrate a strong tendency for the added particles to accumulate at the liquid-liquid interface and to influence the rate of coarsening of the complex bicontinuous microstructure. Large variations in the local curvature of particle-rich interfacial regions are suggestive of a liquid-liquid boundary that is substantially viscoelastic.
Collapse
Affiliation(s)
- Hassan Firoozmand
- Procter Department of Food Science, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
13
|
Kwon Y, Thornton K, Voorhees PW. Coarsening of bicontinuous structures via nonconserved and conserved dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:021120. [PMID: 17358326 DOI: 10.1103/physreve.75.021120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Indexed: 05/14/2023]
Abstract
Coarsening subsequent to phase separations occurs in many two-phase mixtures. While unique scaled particle size distributions have been determined for highly asymmetric mixtures in which spherical particles form in a matrix, it is not known if a unique scaled structure exists for symmetric mixtures, which yield bicontinuous structures having intricately interpenetrating phase domains. Using large-scale simulations, we have established that unique scaled microstructures exist in symmetric mixtures evolving via nonconserved and conserved dynamics. We characterize their morphologies by the interfacial shape distribution, a counterpart to the particle size distribution, and their topologies by the genus. We find that the two dynamics result in unique, but different, scaled interfacial shape distributions, with conserved dynamics yielding a narrower distribution around zero mean curvature. In contrast, the two scaled structures are topologically similar, having nearly equal values of the scaled genus.
Collapse
Affiliation(s)
- Yongwoo Kwon
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208-3108, USA
| | | | | |
Collapse
|
14
|
Lorén N, Hagslätt H, Nydén M, Hermansson AM. Water mobility in heterogeneous emulsions determined by a new combination of confocal laser scanning microscopy, image analysis, nuclear magnetic resonance diffusometry, and finite element method simulation. J Chem Phys 2005; 122:024716. [PMID: 15638623 DOI: 10.1063/1.1830432] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nuclear magnetic resonance (NMR) diffusometry and confocal laser scanning microscopy (CLSM) were combined in a quantitative way in finite element calculations of water propagation in CLSM images obtained from a very heterogeneous emulsion. The propagators calculated on the basis of microstructure were Fourier transformed and subsequently compared with the echo decays obtained by the NMR diffusometry method. The results showed very good agreement between microstructure based calculations and experiments, indicating that the short gradient pulse approximation in the NMR diffusometry experiment holds for a certain q range. Furthermore, the CLSM was able to achieve a relevant two-dimensional microstructure although some discrepancy at low q values was noted. This effect is attributed to the inherent three-dimensional connectivity between the water domains in this type of structures, making the calculations slightly underestimate the water diffusion at longer distances.
Collapse
Affiliation(s)
- N Lorén
- SIK, The Swedish Institute for Food and Biotechnology, Box 5401, SE-402 29 Göteborg, Sweden
| | | | | | | |
Collapse
|
15
|
de Bont PW, Luengo Hendriks CL, van Kempen GM, Vreeker R. Time evolution of phase separating milk protein and amylopectin mixtures. Food Hydrocoll 2004. [DOI: 10.1016/j.foodhyd.2004.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Shimizu K, Wang H, Wang Z, Matsuba G, Kim H, Han CC. Crystallization and phase separation kinetics in blends of linear low-density polyethylene copolymers. POLYMER 2004. [DOI: 10.1016/j.polymer.2004.08.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
|
18
|
Protein–polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Curr Opin Colloid Interface Sci 2003. [DOI: 10.1016/s1359-0294(03)00093-1] [Citation(s) in RCA: 358] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Nordby MH, Kjøniksen AL, Nyström B, Roots J. Thermoreversible gelation of aqueous mixtures of pectin and chitosan. Rheology. Biomacromolecules 2003; 4:337-43. [PMID: 12625729 DOI: 10.1021/bm020107+] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synergistic interaction between pectin and chitosan in aqueous acid solution and in the gel phase has been studied by oscillatory shear measurements. Mixtures of pectin and chitosan form thermoreversible gels over a broad composition range by lowering the temperature. The value of the gelation temperature depends on the composition of the mixture, with low values for mixtures with low pectin contents. For incipient gels, a power law can describe the frequency dependence of the complex viscosity, with power law exponents close to -1. The gel evolution of pectin-chitosan mixtures upon a temperature quench below the gel point has been studied. Evidence is provided for a relation between gelation and phase separation in the process of temperature-induced gelation of pectin-chitosan mixtures. A simple model is proposed to rationalize the gelation process in these systems.
Collapse
Affiliation(s)
- Marianne H Nordby
- Department of Pharmaceutics, School of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, Norway
| | | | | | | |
Collapse
|