1
|
Tang B, Li Z. Mechanisms of Reactions between HOI and HY (Y = Cl, Br, I) on a Water Nanodroplet Surface. J Phys Chem A 2022; 126:8028-8036. [PMID: 36260343 DOI: 10.1021/acs.jpca.2c05414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iodine chemistry has a broad range of implications for atmospheric processes including new particle formation. Hypoiodous acid (HOI) is a major iodine reservoir species. Its heterogeneous recycling in marine aerosols influences the lifetime of ozone in the troposphere. One important step of such recycling is the reaction between HOI and HY (Y = Cl, Br, I). In this article, we employ ab initio molecular dynamics (AIMD) and quantum chemistry to investigate these reactions at the surface of atmospheric aerosols. Di-halogen (XY) can be formed in a picosecond time scale, with the formation of a loop structure connected by hydrogen and halogen bonds. The photolysis of XY at the surface of an aerosol is faster than in the gas phase. In addition to the formation of di-halogen, a new pathway to forming a [H2O···I···OH2]+ complex by the direct or indirect proton transition is identified. Results presented in this study deepen our understanding of the faster iodine-heterogeneous recycling at the surface of aerosols.
Collapse
Affiliation(s)
- Bo Tang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Zhenyu Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| |
Collapse
|
2
|
Zhong J, Zhang W, Wu S, An T, Francisco JS. Molecular Interaction and Orientation of HOCl on Aqueous and Ice Surfaces. J Am Chem Soc 2020; 142:17329-17333. [PMID: 32997935 DOI: 10.1021/jacs.0c08994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction and orientation of hypochlorous acid (HOCl) on the ice surface has been of great interest as it has important implications to ozone depletion. As HOCl interacts with the ice surface, previous classical molecular dynamics simulations suggest its OH moiety orients to the outside of the ice surface, whereas the quantum calculations performed at 0 K indicate its Cl atom is exposed. To resolve this contradiction, herein, Born-Oppenheimer molecular dynamics simulations are adopted, and the results suggest that at ambient temperature, the interaction between HOCl with interfacial water is dominated by the robust H-bond of (HOCl)H-O(H2O). As a result, the HOCl mainly acts as the proton donor to the water surface, which thus can participate in proton transfer reactions via the promotion of interfacial water. Moreover, the Cl atom of HOCl is found to be exposed to the outside of the water surface. Therefore, during the heterogeneous reactions of HOCl on the water surface, the Cl atom becomes the reactive site and is easily attacked by other species.
Collapse
Affiliation(s)
- Jie Zhong
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6316, United States
| | - Weina Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Si Wu
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6316, United States
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6316, United States
| |
Collapse
|
3
|
Casassa S, Baima J, Mahmoud A, Kirtman B. Ab initio investigation of electronic and vibrational contributions to linear and nonlinear dielectric properties of ice. J Chem Phys 2014; 140:224702. [PMID: 24929409 DOI: 10.1063/1.4880961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Electronic and vibrational contributions to the static and dynamic (hyper)polarizability tensors of ice XI and model structures of ordinary hexagonal ice have been theoretically investigated. Calculations were carried out by the finite field nuclear relaxation method for periodic systems (FF-NR) recently implemented in the CRYSTAL code, using the coupled-perturbed Kohn-Sham approach (CPKS) for evaluating the required electronic properties. The effect of structure on the static electronic polarizabilities (dielectric constants) and second-hyperpolarizabilities is minimal. On the other hand, the vibrational contributions to the polarizabilities were found to be significant. A reliable evaluation of these (ionic) contributions allows one to discriminate amongst ice phases characterized by different degrees of proton-order, primarily through differences caused by librational motions. Transverse static and dynamic vibrational (hyper)polarizabilities were found by extrapolating calculations for slabs of increasing size, in order to eliminate substantial surface contributions.
Collapse
Affiliation(s)
- S Casassa
- Dipartimento Chimica IFM and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università degli Studi di Torino, via P. Giuria 5, I-10125 Torino, Italy
| | - J Baima
- Dipartimento Chimica IFM and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università degli Studi di Torino, via P. Giuria 5, I-10125 Torino, Italy
| | - A Mahmoud
- Dipartimento Chimica IFM and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università degli Studi di Torino, via P. Giuria 5, I-10125 Torino, Italy
| | - B Kirtman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
4
|
Pratte P, Rossi MJ. Heterogeneous Chemistry of Cl 2O and HOCl on Frozen Natural Sea Salt, Recrystallized Sea Salt, KCl and NaCl Solutions at 200 and 215 K. Z PHYS CHEM 2010. [DOI: 10.1524/zpch.2010.6144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The HOCl heterogeneous reaction on frozen natural (NSS) and recrystallized (RSS) sea salt, KCl and NaCl solutions was studied using a low pressure flow reactor in order to measure the uptake coefficient γ and products of reaction. The HOCl sample used in these experiments always contained up to 25% Cl2O which was also studied separately as a pure gas in order to understand the heterogeneous chemistry of both gases. By performing HOCl uptake on frozen NSS solution at 200 K and a gas-phase residence time of (1.6±0.6) s we obtained a steady state uptake coefficient γHOCl on NSS = (2.5±0.7)×10-3 and γCl2O on NSS = (2.8±0.8)×10-3. On frozen KCl solution at 200 K we obtain γHOCl on KCl = (2.8±1.3)×10-3, identical to NSS, and γCl2O on KCl = (4.6±0.8)×10-4. The main product formed during the uptake on frozen NSS solution is Cl2 which is sustained for at least one hour. In contrast, only a transient Cl2 flow (pulse) decreasing on the time scale of 100 s was observed on frozen KCl (NaCl) solution. 25±10 % of the HOCl taken up on all chloride-containing frozen substrates at 200 K react to produce Cl2 at high HOCl concentration (4.5×1011 molecule cm-3) and at a residence time of 1.6 s in comparison with twice that for Cl2O. For smaller concentrations such as [HOCl] = 3.7×1010 molecule cm-3 and/or a shorter residence time (0.137±0.004s), HOCl uptake did not generate Cl2 in contrast to Cl2O. A single Br2 burst event was monitored when a Cl2O or HOCl/Cl2O mixture is taken up on fresh frozen NSS solution during the first uptake at 200 K. Further Cl2O or HOCl/Cl2O uptake on the same sample, even after annealing at 240 K does not show an additional Br2 pulse. This Br2 release may be significant in the autocatalytic ozone destruction mechanism in the troposphere during polar sunrise. Some of the atmospheric implications of the present results are highlighted with emphasis on the preequilibrium Cl2O(ads) + H2O(ice) ↔ 2 HOCl(ads) between adsorbed HOCl and Cl2O, with the latter being the gateway to reactive uptake of HOCl at low temperatures.
Collapse
Affiliation(s)
- Pascal Pratte
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Pollution Atmosphérique et sol (LPA, Lausanne, Schweiz
| | | |
Collapse
|
5
|
Labat F, Pouchan C. Adsorption of cyanodiacetylene on ice: a periodic approach. Phys Chem Chem Phys 2009; 11:5833-42. [DOI: 10.1039/b817809g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Bahr S, Borodin A, Höfft O, Kempter V, Allouche A, Borget F, Chiavassa T. Interaction of Acetic Acid with Solid Water. J Phys Chem B 2006; 110:8649-56. [PMID: 16640419 DOI: 10.1021/jp055980u] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The interaction of acetic acid (AA, CH(3)COOH), with solid water, deposited on metals, tungsten and gold, at 80 K, was investigated. We have prepared acid/water interfaces at 80 K, namely, acid layers on thin films of solid water and H(2)O adlayers on thin acid films; they were annealed between 80 and 200 K. Metastable impact electron spectroscopy (MIES) and ultraviolet photoelectron spectroscopy UPS(HeII) were utilized to obtain information on the electronic structure of the outermost surface from the study of the electron emission from the weakest bound MOs of the acids, and of the molecular water. Temperature-programmed desorption (TPD) provided information on the desorption kinetics, and Fourier-transformed infrared spectroscopy (FTIR) provided information on the identification of the adsorbed species as well as on the water and acid crystallization. The results are compatible with the finding of ref 1 (preceding paper), made on the basis of DFT calculations, that AA adsorbs on ice as cyclic dimers. Above 120 K, a rearrangement of the AA dimers is suggested by a sharpening of the spectral features in the IR spectra and by spectral changes in MIES and UPS; this is attributed to the glass transition in AA around 130 K. Above 150 K the spectra transform into those characteristic for polycrystalline polymer chains. This structure is stable up to about 180 K; desorption of water takes place from underneath the AA film, and practically all water has desorbed through the AA film before AA desorption starts. There is no indication of water-induced deprotonation of the acid molecules. For the interaction of H(2)O molecules adsorbed on amorphous AA films, the comparison of MIES with the DFT results of ref 1 shows that the initial phase of exposure does not lead to the formation of a top-adsorbed closed water film at 80 K. Rather, the H(2)O molecules become attached to or incorporated into the preexisting AA network by H bonding; no water network is formed in the initial stage of the water adsorption. Also under these conditions no deprotonation of the acid can be detected.
Collapse
Affiliation(s)
- S Bahr
- Institut für Physik und Physikalische Technologien, Technische Universität Clausthal, D-38678 Clausthal-Zellerfeld, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Mundy CJ, Kuo IFW. First-Principles Approaches to the Structure and Reactivity of Atmospherically Relevant Aqueous Interfaces. Chem Rev 2006; 106:1282-304. [PMID: 16608181 DOI: 10.1021/cr040375t] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher J Mundy
- Computational Chemistry and Chemical Biology, Chemistry and Materials Science, Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551, USA.
| | | |
Collapse
|
8
|
Bahr S, Borodin A, Höfft O, Kempter V, Allouche A. Interaction of formic acid with solid water. J Chem Phys 2005; 122:234704. [PMID: 16008470 DOI: 10.1063/1.1929732] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The interaction of formic acid (HCOOH) with solid water, deposited on tungsten at 80 K, was investigated. We have prepared and annealed formic acid (FA)/water interfaces (FA layers on thin films of solid water and H(2)O adlayers on thin FA films). Metastable impact electron spectroscopy and ultraviolet photoemission spectroscopy (He I and II) were utilized to study the electron emission from the 10a' to 6a' molecular orbitals (MOs) of FA, and the 1b(1), 3a(1), and 1b(2) MOs of H(2)O. These spectra were compared with results of density-functional theory calculations on FA-H(2)O complexes reported in Ref. 14 [A. Allouche, J. Chem. Phys. 122, 234703(2005), (preceding paper)]. Temperature programmed desorption was applied for information on the desorption kinetics. Initially, FA is adsorbed on top of the water film. The FA spectra are distorted with respect to those from FA monomers; it is concluded that a strong interaction exists between the adsorbates. Even though partial solvation of FA species takes place during annealing, FA remains in the top layer up to the desorption of the water film. When H(2)O molecules are offered to FA films at 80 K, no water network is formed during the initial stage of water exposure; H(2)O molecules interact individually via H bonds with the formic acid network. Experiment and theory agree that no water-induced deprotonation of the formic acid molecules takes place.
Collapse
Affiliation(s)
- S Bahr
- Institut für Physik und Physikalische Technologien, Technische Universität Clausthal, D-38678 Clausthal-Zellerfeld, Germany
| | | | | | | | | |
Collapse
|
9
|
Casassa S, Calatayud M, Doll K, Minot C, Pisani C. Proton ordered cubic and hexagonal periodic models of ordinary ice. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.04.068] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|