1
|
Tiwari S, Kumari M, Rawat DS. Air Induced Phosphoryl Radical Mediated Stereoselective Hydrosulfonylation of Alkynes via Halogen Atom Transfer: Ingress of Z-Vinyl Sulfones. Org Lett 2024; 26:2303-2308. [PMID: 38457440 DOI: 10.1021/acs.orglett.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The phosphoryl radical is well-known to participate in addition reactions with alkenes/alkynes. Here, we report a novel reaction mode of the phosphoryl radical where it participates in halogen atom transfer (XAT) with electron deficient vinyl halides instead of a facile addition reaction. Nevertheless, in comparison with aryl and alkyl halides, the exploitation of vinyl halides into a carbon radical via XAT is quite rare. This protocol provides an opportunity for direct hydrosulfonylation of numerous internal as well as terminal alkynes to get various Z-vinyl sulfones under environmentally benign conditions. Generation of the phosphoryl radical in the open air, water as a solvent, excellent functional group compatibility, and exceptional chemoselectivity are the attractive features of the present methodology.
Collapse
Affiliation(s)
| | - Manisha Kumari
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Diwan S Rawat
- Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
2
|
Luo XL, Huang MS, Li SS, Jiang YS, Chen LN, Li SH, Xia PJ. Photocatalytic Multicomponent 1, n-Carboimination with Alkyl Iodides and O-Benzoyl Oxime through EnT and XAT Processes. Org Lett 2023; 25:6407-6412. [PMID: 37607051 DOI: 10.1021/acs.orglett.3c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In this study, we developed a strategy using commercially available alkyl iodides and O-benzoyl oxime to efficiently introduce alkyl and iminyl groups via energy transfer and halogen-atom transfer processes. We performed three-component 1,2-carboimination of olefins and four-component 1,4-carboimination across olefins and alkynes, resulting in the synthesis of over 60 nitrogen-containing molecules. Moreover, this transformation enables the synthesis of molecules with sensitive groups that were previously difficult to achieve.
Collapse
Affiliation(s)
- Xue-Ling Luo
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Miao-Sha Huang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shan-Shan Li
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yu-Shi Jiang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Li-Ning Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shu-Hui Li
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
3
|
Toulson BW, Hait D, Faccialà D, Neumark DM, Leone SR, Head-Gordon M, Gessner O. Probing C-I bond fission in the UV photochemistry of 2-iodothiophene with core-to-valence transient absorption spectroscopy. J Chem Phys 2023; 159:034304. [PMID: 37466229 DOI: 10.1063/5.0151629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
The UV photochemistry of small heteroaromatic molecules serves as a testbed for understanding fundamental photo-induced chemical transformations in moderately complex compounds, including isomerization, ring-opening, and molecular dissociation. Here, a combined experimental-theoretical study of 268 nm UV light-induced dynamics in 2-iodothiophene (C4H3IS) is performed. The dynamics are experimentally monitored with a femtosecond extreme ultraviolet (XUV) probe that measures iodine N-edge 4d core-to-valence transitions. Experiments are complemented by density functional theory calculations of both the pump-pulse induced valence excitations and the XUV probe-induced core-to-valence transitions. Possible intramolecular relaxation dynamics are investigated by ab initio molecular dynamics simulations. Gradual absorption changes up to ∼0.5 to 1 ps after excitation are observed for both the parent molecular species and emerging iodine fragments, with the latter appearing with a characteristic rise time of 160 ± 30 fs. Comparison of spectral intensities and energies with the calculations identifies an iodine dissociation pathway initiated by a predominant π → π* excitation. In contrast, initial excitation to a nearby n⟂ → σ* state appears unlikely based on a significantly smaller oscillator strength and the absence of any corresponding XUV absorption signatures. Excitation to the π → π* state is followed by contraction of the C-I bond, enabling a nonadiabatic transition to a dissociative π→σC-I* state. For the subsequent fragmentation, a relatively narrow bond-length region along the C-I stretch coordinate between 230 and 280 pm is identified, where the transition between the parent molecule and the thienyl radical + iodine atom products becomes prominent in the XUV spectrum due to rapid localization of two singly occupied molecular orbitals on the two fragments.
Collapse
Affiliation(s)
- Benjamin W Toulson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Diptarka Hait
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Davide Faccialà
- CNR-Istituto di Fotonica e Nanotecnologie (CNR-IFN), 20133 Milano, Italy
| | - Daniel M Neumark
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Stephen R Leone
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Oliver Gessner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
4
|
Zhang J, Jiang M, Wang CS, Guo K, Li QX, Ma C, Ni SF, Chen GQ, Zong Y, Lu H, Xu LW, Shao X. Transition-metal free C-N bond formation from alkyl iodides and diazonium salts via halogen-atom transfer. Nat Commun 2022; 13:7961. [PMID: 36575172 PMCID: PMC9794826 DOI: 10.1038/s41467-022-35613-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Construction of C-N bond continues to be one part of the most significant goals in organic chemistry because of the universal applications of amines in pharmaceuticals, materials and agrochemicals. However, E2 elimination through classic SN2 substitution of alkyl halides lead to generation of alkenes as major side-products. Thus, formation of a challenging C(sp3)-N bond especially on tertiary carbon center remains highly desirable. Herein, we present a practical alternative to prepare primary, secondary and tertiary alkyl amines with high efficiency between alkyl iodides and easily accessible diazonium salts. This robust transformation only employs Cs2CO3 promoting halogen-atom transfer (XAT) process under transition-metal-free reaction conditions, thus providing a rapid method to assemble diverse C(sp3)-N bonds. Moreover, diazonium salts served as alkyl radical initiator and amination reagent in the reaction. Mechanism studies suggest this reaction undergo through halogen-atom transfer process to generate active alkyl radical which couples with diazonium cations to furnish final products.
Collapse
Affiliation(s)
- Jing Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Min Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Chang-Sheng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Quan-Xin Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guang-dong Province, Shantou University, Shantou, 515063, Guangdong, China
| | - Cheng Ma
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guang-dong Province, Shantou University, Shantou, 515063, Guangdong, China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guang-dong Province, Shantou University, Shantou, 515063, Guangdong, China
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Yan Zong
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Hua Lu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Li-Wen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
5
|
Weike N, Chanut E, Hoppe H, Eisfeld W. Development of a fully coupled diabatic spin-orbit model for the photodissociation of phenyl iodide. J Chem Phys 2022; 156:224109. [PMID: 35705416 DOI: 10.1063/5.0088205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The theoretical treatment of the quantum dynamics of the phenyl iodide photodissociation requires an accurate analytical potential energy surface (PES) model. This model must also account for spin-orbit (SO) coupling. This study is the first step to construct accurate SO coupled PESs, namely, for the C-I dissociation coordinate. The model is based on the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) method developed over the past ten years. The SO-free Hamiltonian is represented in an asymptotic diabatic basis and then combined with an atomic effective relativistic coupling operator determined analytically. In contrast to the previously studied cases (HI, CH3I), the diabatic basis states are due to excitations in the phenyl fragment rather than the iodine atom. An accurate analytical model of the ab initio reference data is determined in two steps. The first step is a simple reference model describing the data qualitatively. This reference model is corrected through a trained artificial neural-network to achieve high accuracy. The SO-free and the fine structure states resulting from this ERCAR model are discussed extensively in the context of the photodissociation.
Collapse
Affiliation(s)
- Nicole Weike
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Emma Chanut
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Hannes Hoppe
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Wolfgang Eisfeld
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| |
Collapse
|
6
|
Sanosa N, Peñin B, Sampedro D, Funes-Ardoiz I. On the Mechanism of Halogen Atom Transfer from C‐X Bonds to α‐Aminoalkyl Radicals: A Computational Study. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nil Sanosa
- University of La Rioja: Universidad de la Rioja Chemistry (Centro de Investigación en Síntesis Química) C/Madre de Dios,53 26004 Logroño SPAIN
| | - Beatriz Peñin
- University of La Rioja: Universidad de la Rioja Chemistry (Centro de Investigación en Síntesis Química) Madre de Dios,53 26004 Logroño SPAIN
| | - Diego Sampedro
- University of La Rioja: Universidad de la Rioja Chemistry (Centro de Investigación en Síntesis Química) C/Madre de Dios,53 26004 Logroño SPAIN
| | - Ignacio Funes-Ardoiz
- University of La Rioja: Universidad de la Rioja Chemistry (Centro de Investigación en Síntesis Química) Madre de Dios, 53 26004 Logroño SPAIN
| |
Collapse
|
7
|
Juliá F, Constantin T, Leonori D. Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chem Rev 2021; 122:2292-2352. [PMID: 34882396 DOI: 10.1021/acs.chemrev.1c00558] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The halogen-atom transfer (XAT) is one of the most important and applied processes for the generation of carbon radicals in synthetic chemistry. In this review, we summarize and highlight the most important aspects associated with XAT and the impact it has had on photochemistry and photocatalysis. The organization of the material starts with the analysis of the most important mechanistic aspects and then follows a subdivision based on the nature of the reagents used in the halogen abstraction. This review aims to provide a general overview of the fundamental concepts and main agents involved in XAT processes with the objective of offering a tool to understand and facilitate the development of new synthetic radical strategies.
Collapse
Affiliation(s)
- Fabio Juliá
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Timothée Constantin
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Daniele Leonori
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
8
|
He C, Yin R, Hu G, Zhou X, Chen Y, Zhao D, Jiang B. Combined experimental and theoretical study on the ultraviolet photodissociation dynamics of 1-bromo-2,6-difluorobenzene in 267 nm-234 nm. J Chem Phys 2020; 153:034305. [PMID: 32716193 DOI: 10.1063/5.0010823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thanks to their specific molecular symmetry, aromatic molecules and their derivatives represent ideal model systems in understanding photo-induced chemistry of small molecules. Herein, ultraviolet photodissociation dynamics of the 1-bromo-2,6-difluorobenzene molecule has been visualized via imaging the recoiling velocity distributions of photofragments. The measured recoiling angular distributions of the Br(2P3/2) product vary significantly with the increasing photon energy, arguing against the simple bond-fission mechanism within the C2v symmetry. Ab initio calculations reveal that in addition to the C-Br bond cleavage, two additional internal molecular coordinates that break the molecular symmetry are likely involved. The Br out-of-plane bending opens a direct dissociation pathway on the S1-1A″ (S1-1ππ*) state, while the asymmetric C-F stretching significantly changes the orientation of the transition dipole moment. The present study sheds new light on the effect of symmetry breaking in the photodissociation dynamics of symmetric aryl halides, highlighting the multi-dimensional feature of excited state potential energy surfaces.
Collapse
Affiliation(s)
- Chao He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Rongrong Yin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Gaoming Hu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xueyao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yang Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Dongfeng Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Bin Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Allum F, Burt M, Amini K, Boll R, Köckert H, Olshin PK, Bari S, Bomme C, Brauße F, Cunha de Miranda B, Düsterer S, Erk B, Géléoc M, Geneaux R, Gentleman AS, Goldsztejn G, Guillemin R, Holland DMP, Ismail I, Johnsson P, Journel L, Küpper J, Lahl J, Lee JWL, Maclot S, Mackenzie SR, Manschwetus B, Mereshchenko AS, Mason R, Palaudoux J, Piancastelli MN, Penent F, Rompotis D, Rouzée A, Ruchon T, Rudenko A, Savelyev E, Simon M, Schirmel N, Stapelfeldt H, Techert S, Travnikova O, Trippel S, Underwood JG, Vallance C, Wiese J, Ziaee F, Brouard M, Marchenko T, Rolles D. Coulomb explosion imaging of CH3I and CH2ClI photodissociation dynamics. J Chem Phys 2018; 149:204313. [DOI: 10.1063/1.5041381] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Felix Allum
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Michael Burt
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Kasra Amini
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Rebecca Boll
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Hansjochen Köckert
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Pavel K. Olshin
- Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Cédric Bomme
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Felix Brauße
- Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Barbara Cunha de Miranda
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique—Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Stefan Düsterer
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Marie Géléoc
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Romain Geneaux
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Alexander S. Gentleman
- The Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | | | - Renaud Guillemin
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique—Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - David M. P. Holland
- Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, United Kingdom
| | - Iyas Ismail
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique—Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Per Johnsson
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Loïc Journel
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique—Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Jan Lahl
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Jason W. L. Lee
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Sylvain Maclot
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Stuart R. Mackenzie
- The Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Bastian Manschwetus
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Andrey S. Mereshchenko
- Saint-Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Robert Mason
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Jérôme Palaudoux
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique—Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Maria Novella Piancastelli
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique—Matière et Rayonnement, LCPMR, F-75005 Paris, France
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75120 Uppsala, Sweden
| | - Francis Penent
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique—Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Dimitrios Rompotis
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Arnaud Rouzée
- Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Thierry Ruchon
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Evgeny Savelyev
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Marc Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique—Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Nora Schirmel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Institute of X-ray Physics, University of Göttingen, 37077 Göttingen, Germany
| | - Oksana Travnikova
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique—Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Sebastian Trippel
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jonathan G. Underwood
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Claire Vallance
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Joss Wiese
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Farzaneh Ziaee
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Mark Brouard
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Tatiana Marchenko
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique—Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
10
|
Palmer MH, Hoffmann SV, Jones NC, Coreno M, de Simone M, Grazioli C, Peterson KA, Baiardi A, Zhang T, Biczysko M. A combined theoretical and experimental study of the valence and Rydberg states of iodopentafluorobenzene. J Chem Phys 2018; 146:174301. [PMID: 28477584 DOI: 10.1063/1.4981919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new ultraviolet (UV) and vacuum ultraviolet (VUV) spectrum for iodopentafluorobenzene (C6F5I) using synchrotron radiation is reported. The measurements have been combined with those from a recent high-resolution photoelectron spectroscopic study. A major theoretical study, which includes both Franck-Condon (FC) and Herzberg-Teller (HT) analyses, leads to conclusions, which are compatible with both experimental studies. Our observation that the VUV multiplet at 7.926 eV in the VUV spectrum is a Rydberg state rather than a valence state leads to a fundamental reassignment of the VUV Rydberg spectrum over previous studies and removes an anomaly where some previously assigned Rydberg states were to optically forbidden states. Adiabatic excitation energies (AEEs) were determined from equations-of-motion coupled cluster with singles and doubles excitation; these were combined with time dependent density functional theoretical methods. Frequencies from these two methods are very similar, and this enabled the evaluation of both FC and HT contributions in the lower valence states. Multi-reference multi-root configuration interaction gave a satisfactory account of the principal UV+VUV spectral profile of C6F5I, with vertical band positions and intensities. The UV spectral onset consists of two very weak transitions assigned to 11B1 (πσ*) and 11B2 (σσ*) symmetries. The lowest unoccupied molecular orbital of a σ*(a1) symmetry has a significant C-I* antibonding character. This results in considerable lengthening of the C-I bond for both these excited states. The vibrational intensity of the lowest 11B1 state is dominated by HT contributions; the 11B2 state contains both HT and FC contributions; the third band, which contains three states, two ππ*(11A1, 21B2) and one πσ*(21B1), is dominated by FC contributions in the 1A1 state. In this 1A1 state, and the spectrally dominant bands near 6.7 (1A1) and 7.3 eV (1A1 + 1B2), the C-I bond length is in the normal range, and FC components dominate.
Collapse
Affiliation(s)
- Michael H Palmer
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ Scotland, United Kingdom
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | | | | | | | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | - Alberto Baiardi
- Scuola Normale Superiore, Piazza Cavalieri 7, 56126 Pisa, Italy
| | - Teng Zhang
- Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
| | - Malgorzata Biczysko
- International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
11
|
Hu C, Tang Y, Song X, Liu Z, Zhang B. Ultrafast Photodissociation Dynamics of Highly Excited Iodobenzene on the C Band. J Phys Chem A 2016; 120:10088-10095. [PMID: 27982598 DOI: 10.1021/acs.jpca.6b09610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photodissociation dynamics of highly excited iodobenzene from the C band absorption has been studied by femtosecond time-resolved ion yields techniques. Detailed photodissociation routes are discussed with the aid of high-level, spin-orbit resolved ab initio calculations of 1D potential energy curves. Upon 200 nm excitation within the C band, iodobenzene molecules on 7B2 and 7B1 states decay to 7A1 and 8B2 states through internal conversion in 75 fs, with electronic energy converted into high vibrational energy of 7A1 and 8B2 states. Subsequently, 7A1 and 8B2 states decay through internal vibrational energy redistribution in 540 fs, accompanied by the excited C-I mode and the resulting cleavage of the C-I bond. The overall time for the reaction starting from the phenyl-type modes and ending in final C-I fragmentation for I(2P3/2) production is 1.2 ps.
Collapse
Affiliation(s)
- Chunlong Hu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Ying Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Xinli Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Zhiming Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
12
|
Palmer MH, Ridley T, Hoffmann SV, Jones NC, Coreno M, de Simone M, Grazioli C, Biczysko M, Baiardi A, Limão-Vieira P. Interpretation of the vacuum ultraviolet photoabsorption spectrum of iodobenzene by ab initio computations. J Chem Phys 2015; 142:134302. [PMID: 25854238 DOI: 10.1063/1.4916121] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Identification of many Rydberg states in iodobenzene, especially from the first and fourth ionization energies (IE1 and IE4, X(2)B1 and C(2)B1), has become possible using a new ultraviolet (UV) and vacuum-ultraviolet (VUV) absorption spectrum, in the region 29 000-87 000 cm(-1) (3.60-10.79 eV), measured at room temperature with synchrotron radiation. A few Rydberg states based on IE2 (A(2)A2) were found, but those based on IE3 (B(2)B2) are undetectable. The almost complete absence of observable Rydberg states relating to IE2 and IE3 (A(2)A2 and B(2)B2, respectively) is attributed to them being coupled to the near-continuum, high-energy region of Rydberg series converging on IE1. Theoretical studies of the UV and VUV spectra used both time-dependent density functional (TDDFT) and multi-reference multi-root doubles and singles-configuration interaction methods. The theoretical adiabatic excitation energies, and their corresponding vibrational profiles, gave a satisfactory interpretation of the experimental results. The calculations indicate that the UV onset contains both 1(1)B1 and 1(1)B2 states with very low oscillator strength, while the 2(1)B1 state was found to lie under the lowest ππ(∗) 1(1)A1 state. All three of these (1)B1 and (1)B2 states are excitations into low-lying σ(∗) orbitals. The strongest VUV band near 7 eV contains two very strong ππ(∗) valence states, together with other weak contributors. The lowest Rydberg 4b16s state (3(1)B1) is very evident as a sharp multiplet near 6 eV; its position and vibrational structure are well reproduced by the TDDFT results.
Collapse
Affiliation(s)
- Michael H Palmer
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland, United Kingdom
| | - Trevor Ridley
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland, United Kingdom
| | - Søren Vrønning Hoffmann
- Department of Physics and Astronomy, ISA, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Nykola C Jones
- Department of Physics and Astronomy, ISA, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Marcello Coreno
- CNR-ISM, Montelibretti, c/o Laboratorio Elettra, Trieste, Italy
| | | | | | - Malgorzata Biczysko
- National Research Council ICCOM-CNR, UOS di Pisa, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Alberto Baiardi
- Scuola Normale Superiore, Piazza Cavalieri 7, 56126 Pisa, Italy
| | - Paulo Limão-Vieira
- Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
13
|
Gardiner SH, Lipciuc ML, Karsili TNV, Ashfold MNR, Vallance C. Dynamics of the A-band ultraviolet photodissociation of methyl iodide and ethyl iodide via velocity-map imaging with ‘universal’ detection. Phys Chem Chem Phys 2015; 17:4096-106. [DOI: 10.1039/c4cp04654d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Universal ionization combined with velocity-map imaging allows a comprehensive investigation into the photodissociation dynamics of methyl iodide and ethyl iodide at a range of UV wavelengths within their A-bands.
Collapse
Affiliation(s)
- Sara H. Gardiner
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | - M. Laura Lipciuc
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| | | | | | - Claire Vallance
- Department of Chemistry
- University of Oxford
- Chemistry Research Laboratory
- Oxford
- UK
| |
Collapse
|
14
|
Murdock D, Crow MB, Ritchie GAD, Ashfold MNR. UV photodissociation dynamics of iodobenzene: Effects of fluorination. J Chem Phys 2012; 136:124313. [DOI: 10.1063/1.3696892] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Paul D, Kim HK, Hong KR, Kim TK. Dynamics of Br(2Pj) Formation in the Photodissociation of Bromobenzene. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.2.659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Sage AG, Oliver TAA, Murdock D, Crow MB, Ritchie GAD, Harvey JN, Ashfold MNR. nσ* and πσ* excited states in aryl halide photochemistry: a comprehensive study of the UV photodissociation dynamics of iodobenzene. Phys Chem Chem Phys 2011; 13:8075-93. [DOI: 10.1039/c0cp02390f] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Liu YJ, Tian YC, Fang WH. Spin-orbit ab initio investigation of photolysis of o-, m-, and p-iodotoluene. J Chem Phys 2010; 132:014306. [PMID: 20078160 DOI: 10.1063/1.3290952] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The multistate second order multiconfigurational perturbation theory in conjunction with spin-orbit interaction through complete active space state interaction (MS-CASPT2/CASSI-SO) was employed to calculate the potential energy curves for the ground and low-lying excited states of o-, m-, and p-iodotoluene along the assumed photolysis reaction coordinates. The mechanism and channels leading to products I((2)P(3/2)) and I( *)((2)P(3/2)) for o-, m-, and p-iodotoluene photolysis at 266 and 304 nm were elucidated with the computed potential energy curves and the surface crossing points. The effects of methyl substituent and heavy atom on the photodissociation mechanism were discussed by the comparison to related alkyl and aryl halides.
Collapse
Affiliation(s)
- Ya-Jun Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | | | | |
Collapse
|
18
|
Ly T, Julian RR. Tracking radical migration in large hydrogen deficient peptides with covalent labels: facile movement does not equal indiscriminate fragmentation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1148-1158. [PMID: 19286394 DOI: 10.1016/j.jasms.2009.02.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 01/29/2009] [Accepted: 02/05/2009] [Indexed: 05/27/2023]
Abstract
Photodissociation of iodo-tyrosine modified peptides yields localized radicals on the tyrosine side chain, which can be further dissociated by collisional activation. We have performed extensive experiments on model peptides, RGYALG, RGYG, and their derivatives, to elucidate the mechanisms underlying backbone fragmentation at tyrosine. Neither acetylation nor deuteration of the tyrosyl phenolic hydrogen significantly affects backbone fragmentation. However, deuterium migration from the tyrosyl beta carbon is concomitant with cleavage at tyrosine. Substitution of tyrosine with 4-hydroxyphenylglycine, which does not have beta hydrogens, results in almost complete elimination of backbone fragmentation at tyrosine. These results suggest that a radical situated on the beta carbon is required for a-type fragmentation in hydrogen-deficient radical peptides. Replacement of the alphaH of the residue adjacent to tyrosine with methyl groups results in significant diminution of backbone fragmentation. The initial radical abstracts an alphaH from the adjacent amino acid, which is poised to "rebound" and abstract the betaH of tyrosine through a six-membered transition-state. Subsequent beta-scission leads to the observed a-type backbone fragment. These results from deuterated peptides clearly reveal that radical migration in peptides can occur and that multiple migrations are not infrequent. Counterintuitively, close examination of all experimental results reveals that the probability for fragmentation at a particular residue is well correlated with thermodynamic radical stability. A-type fragmentation therefore appears to be most likely when favorable thermodynamics are combined with the relevant kinetic control. These results are consistent with ab initio calculations, which demonstrate that barriers to migration are significantly smaller in magnitude than probable dissociation thresholds.
Collapse
Affiliation(s)
- Tony Ly
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
19
|
Eden S, Hubin-Franskin MJ, Delwiche J, Hoffmann S, Mason N, Jones N. Iodopentafluorobenzene: Electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption and photoelectron spectroscopy. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2009.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Sun Q, Nelson H, Ly T, Stoltz BM, Julian RR. Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals. J Proteome Res 2009; 8:958-66. [PMID: 19113886 DOI: 10.1021/pr800592t] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A crown ether based, photolabile radical precursor which forms noncovalent complexes with peptides has been prepared. The peptide/precursor complexes can be electrosprayed, isolated in an ion trap, and then subjected to laser photolysis and collision induced dissociation to generate hydrogen deficient peptide radicals. It is demonstrated that these peptide radicals behave very differently from the hydrogen rich peptide radicals generated by electron capture methods. In fact, it is shown that side chain chemistry dictates both the occurrence and relative abundance of backbone fragments that are observed. Fragmentation at aromatic residues occurs preferentially over most other amino acids. The origin of this selectivity relates to the mechanism by which backbone dissociation is initiated. The first step is abstraction of a beta-hydrogen from the side chain, followed by beta-elimination to yield primarily a-type fragment ions. Calculations reveal that those side chains which can easily lose a beta-hydrogen correlate well with experimentally favored sites for backbone fragmentation. In addition, radical mediated side chain losses from the parent peptide are frequently observed. Eleven amino acids exhibit unique mass losses from side chains which positively identify that particular amino acid as part of the parent peptide. Therefore, side chain losses allow one to unambiguously narrow the possible sequences for a parent peptide, which when combined with predictable backbone fragmentation should lead to greatly increased confidence in peptide identification.
Collapse
Affiliation(s)
- Qingyu Sun
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
21
|
Chapter 1 Multireference and Spin–Orbit Calculations on Photodissociations of Hydrocarbon Halides. ADVANCES IN QUANTUM CHEMISTRY 2009. [DOI: 10.1016/s0065-3276(08)00401-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Hancock G, Horrocks SJ, Ritchie GAD, Helden JHV, Walker RJ. Time-Resolved Detection of the CF3 Photofragment Using Chirped QCL Radiation. J Phys Chem A 2008; 112:9751-7. [DOI: 10.1021/jp804849m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G. Hancock
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, The University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - S. J. Horrocks
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, The University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - G. A. D. Ritchie
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, The University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - J. H. van Helden
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, The University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - R. J. Walker
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, The University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| |
Collapse
|
23
|
Gilchrist A, Hancock G, Peverall R, Richmond G, Ritchie GAD, Taylor S. Methyl Iodide Photodissociation at 193 nm: The I(2P1/2) Quantum Yield. J Phys Chem A 2008; 112:4531-6. [DOI: 10.1021/jp710799k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Gilchrist
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - G. Hancock
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - R. Peverall
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - G. Richmond
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - G. A. D. Ritchie
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - S. Taylor
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| |
Collapse
|
24
|
|
25
|
Ly T, Julian RR. Residue-specific radical-directed dissociation of whole proteins in the gas phase. J Am Chem Soc 2007; 130:351-8. [PMID: 18078340 DOI: 10.1021/ja076535a] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The rapid identification of proteins from biological samples is critical for extracting useful information in proteomics studies. Mass spectrometry is one among the various methods of choice for achieving this task; however, current approaches are limited by a lack of chemical control over proteins in the gas phase. Herein, it is shown that modification of tyrosine to iodo-tyrosine followed by UV photodissociation of the carbon-iodine bond can be used to generate a radial site specifically at the modified residue. The subsequent dissociation of the protein is largely dominated by radical-directed reactions, including dominant backbone fragmentation at the modified tyrosine. If iodination of the protein is carried out under natively folded conditions, the modification and ultimate fragmentation can typically be isolated to a single tyrosine residue. Some secondary backbone cleavage in the immediate vicinity of the modified tyrosine also occurs, especially if proline is present. In the absence of a reactive tyrosine residue, similar chemistry occurs via iodination at histidine. Possible mechanisms which would lead to the observed a-type fragments at tyrosine and the secondary fragments at proline are discussed. A method for using this type of site-specific information to reduce database searching times in proteomics experiments by several orders of magnitude is outlined.
Collapse
Affiliation(s)
- Tony Ly
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
26
|
|
27
|
Hancock G, Hutchinson A, Peverall R, Richmond G, Ritchie GAD, Taylor S. 266 nm photolysis of CF3I and C2F5I studied by diode laser gain FM spectroscopy. Phys Chem Chem Phys 2007; 9:2234-9. [PMID: 17487320 DOI: 10.1039/b617414k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Frequency modulated diode laser based absorption at 1.315 microm has been used to measure the Doppler lineshapes of the I((2)P(1/2)-(2)P(3/2)) transition in atomic iodine produced from the 266 nm photolysis of both CF(3)I and C(2)F(5)I. Wavelength resolved laser gain is seen following photolysis as excited iodine atoms ((2)P(1/2)) are produced with a quantum yield close to unity from photolysis of both parent molecules. Time resolved measurements were made and the nascent speed distribution and translational anisotropy parameter, beta were determined. Mean atomic speeds of 800 and 850 ms(-1), which correspond to 83 and 68% of the maximum possible kinetic energy release into the iodine photofragment, were determined for photolysis of CF(3)I and C(2)F(5)I, respectively. The nascent translational anisotropy parameter was found to be beta = 1.77 +/- 0.05 for CF(3)I and beta = 1.69 +/- 0.05 for C(2)F(5)I. These values are explicable in terms of parent rotational motion and non-adiabatic processes in the exit channel.
Collapse
Affiliation(s)
- G Hancock
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, UK OX1 3QZ
| | | | | | | | | | | |
Collapse
|
28
|
Borg OA, Liu YJ, Persson P, Lunell S, Karlsson D, Kadi M, Davidsson J. Photochemistry of Bromofluorobenzenes. J Phys Chem A 2006; 110:7045-56. [PMID: 16737252 DOI: 10.1021/jp0600864] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photochemistry of low lying excited states of six different fluorinated bromobenzenes has been investigated by means of femtosecond laser spectroscopy and high level ab initio CASSCF/CASPT2 quantum chemical calculations. The objective of the work was to investigate how and to what extent light substituents, position on the benzene ring and number, would influence the dissociation mechanism of bromobenzene. In general, the actual position of a fluorine atom affects the dissociation rate to a less extent than the number of fluorine atoms. A clear connection between a lowering of a repulsive pisigma relative to a bound pipi state and the number of fluorine substituents exists, and the previously suggested model of coupling between dissociation rate and relative location of bound and repulsive state still holds for these molecules. A more elaborate examination of the electronic structure of the excited states in bromobenzenes than previously reported is presented.
Collapse
Affiliation(s)
- O Anders Borg
- Department of Quantum Chemistry, Uppsala University, Sweden
| | | | | | | | | | | | | |
Collapse
|
29
|
Senapati D, Das PK. Photodissociation of o-C6H4I(CH2Cl) in the near ultraviolet: a case of photoselective C–I bond dissociation. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2004.12.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Siffalovic P, Michelswirth M, Bartz P, Decker B, Agena C, Schäfer C, Molter S, Ros R, Bach M, Neumann M, Anselmetti D, Mattay J, Heinzmann U, Drescher M. Large-scale homogeneous molecular templates for femtosecond time-resolved studies of the guest–host interaction. J Biotechnol 2004; 112:139-49. [PMID: 15288949 DOI: 10.1016/j.jbiotec.2004.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 03/31/2004] [Accepted: 04/01/2004] [Indexed: 11/17/2022]
Abstract
Self-assembled monolayer films based on iodobenzoyloxy-functionalized resorc[4]arenes were prepared on gold substrates to serve as model systems for future time-resolved studies of molecular recognition, a mechanism of outstanding importance in bioorganic systems. The film properties were tested using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and imaging ellipsometry. An apparatus for time-resolved electron spectroscopy utilizing femtosecond soft X-ray pulses is capable of detecting iodine core-level photolines and the photoinduced dissociation after ultraviolet illumination. The developed technique holds promise for tracking the temporal evolution of chemical shifts of atomic markers as local probes for the dynamics of the guest-host interaction.
Collapse
Affiliation(s)
- P Siffalovic
- Molekül und Oberflächenphysik, Fakultät für Physik, Universität Bielefeld, 33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Senapati D, Maity S, Das PK. I*(2P1/2) and Cl*(2P1/2) Production from Chloroiodobenzenes in the Ultraviolet. J Phys Chem A 2004. [DOI: 10.1021/jp049345k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dulal Senapati
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Sandip Maity
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Puspendu K. Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
32
|
Liu YJ, Persson P, Lunell S. Theoretical Study of the Fast Photodissociation Channels of the Monohalobenzenes. J Phys Chem A 2004. [DOI: 10.1021/jp0379648] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ya-Jun Liu
- Department of Quantum Chemistry, Uppsala University, Box 518, S-751 20 Uppsala, Sweden, and Materials and Process Simulation Centre, Beckman Institute 13974, California Institute of Technology, Pasadena, California 91125
| | - Petter Persson
- Department of Quantum Chemistry, Uppsala University, Box 518, S-751 20 Uppsala, Sweden, and Materials and Process Simulation Centre, Beckman Institute 13974, California Institute of Technology, Pasadena, California 91125
| | - Sten Lunell
- Department of Quantum Chemistry, Uppsala University, Box 518, S-751 20 Uppsala, Sweden, and Materials and Process Simulation Centre, Beckman Institute 13974, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|