Esquivel-Sirvent R. Anomaly of the dielectric function of water under confinement and its role in van der Waals interactions.
Phys Rev E 2020;
102:042609. [PMID:
33212683 DOI:
10.1103/physreve.102.042609]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/29/2020] [Indexed: 11/07/2022]
Abstract
We present a theoretical calculation of the changes in the Hamaker constant due to the anomalous reduction of the static dielectric function of water. Under confinement, the dielectric function of water decreases from a bulk value of 80 down to 2. If the confining walls are made of a dielectric material, the Hamaker constant reduces by almost 90%. However, if the confinement is realized with metallic plates, there is little change in the Hamaker constant. Additionally, we show that confinement can be used to decreases the Debye screening length without changing the salt concentration. This in turn is used to change the Hamaker constant in the presence of electrolytes.
Collapse