1
|
Tang X, Yu C, Lei Y, Wang Z, Wang C, Wang J. A novel chitosan-urea encapsulated material for persulfate slow-release to degrade organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128083. [PMID: 34923382 DOI: 10.1016/j.jhazmat.2021.128083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
A novel eco-friendly material (CS-U@PS) for persulfate slow-release to effectively degrade organic pollutants (methyl orange and pyrene) was synthesized using chitosan and urea as the encapsulated framework materials via an emulsion cross-linking method for the first time. The obtained CS-U@PS exhibits spherical shapes with a uniform size of approximately 2-3 µm according to the particle-size distribution and SEM image results. The slow-release mechanism was proposed through a kinetics model study and the Ritger-Peppas model fit well (r2 = 0.9699) to indicate that the slow-release process is non-Fickian diffusion. The influences of urea and PS dosages and oxidative conditions on methyl orange degradation were studied, and all the results suggested that urea played an important role in PS slow-release and can also catalyze the activation of PS by iron to further produce radicals and improve the removal efficiency of pollutants. A pyrene removal rate of 90.53% was achieved in aqueous solutions and an above 80% removal rate was obtained in weakly acidic or neutral soil environments by CS-U@PS activated by Fe2+ with citric acid as the chelating agent. Therefore, the fabricated slow-release oxidation materials exhibit application potential for the remediation of organic polluted groundwater and soil.
Collapse
Affiliation(s)
- Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Urban Environmental Pollution Diagnosis and Remediation Technology Engineering Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Congya Yu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Urban Environmental Pollution Diagnosis and Remediation Technology Engineering Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yuanyuan Lei
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Urban Environmental Pollution Diagnosis and Remediation Technology Engineering Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Zhen Wang
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Urban Environmental Pollution Diagnosis and Remediation Technology Engineering Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jingang Wang
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
2
|
Ploetz EA, Karunaweera S, Bentenitis N, Chen F, Dai S, Gee MB, Jiao Y, Kang M, Kariyawasam NL, Naleem N, Weerasinghe S, Smith PE. Kirkwood-Buff-Derived Force Field for Peptides and Proteins: Philosophy and Development of KBFF20. J Chem Theory Comput 2021; 17:2964-2990. [PMID: 33878263 DOI: 10.1021/acs.jctc.1c00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new classical nonpolarizable force field, KBFF20, for the simulation of peptides and proteins is presented. The force field relies heavily on the use of Kirkwood-Buff theory to provide a comparison of simulated and experimental Kirkwood-Buff integrals for solutes containing the functional groups common in proteins, thus ensuring intermolecular interactions that provide a good balance between the peptide-peptide, peptide-solvent, and solvent-solvent distributions observed in solution mixtures. In this way, it differs significantly from other biomolecular force fields. Further development and testing of the intermolecular potentials are presented here. Subsequently, rotational potentials for the ϕ/ψ and χ dihedral degrees of freedom are obtained by analysis of the Protein Data Bank, followed by small modifications to provide a reasonable balance between simulated and observed α and β percentages for small peptides. This, the first of two articles, describes in detail the philosophy and development behind KBFF20.
Collapse
Affiliation(s)
- Elizabeth A Ploetz
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Sadish Karunaweera
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Nikolaos Bentenitis
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Feng Chen
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Shu Dai
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Moon B Gee
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Yuanfang Jiao
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Myungshim Kang
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Nilusha L Kariyawasam
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | - Nawavi Naleem
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| | | | - Paul E Smith
- Department of Chemistry, Kansas State University, 213 CBC Building, 1212 Mid-Campus Drive North, Manhattan, Kansas 66506, United States
| |
Collapse
|
3
|
Cloutier T, Sudrik C, Sathish HA, Trout BL. Kirkwood–Buff-Derived Alcohol Parameters for Aqueous Carbohydrates and Their Application to Preferential Interaction Coefficient Calculations of Proteins. J Phys Chem B 2018; 122:9350-9360. [DOI: 10.1021/acs.jpcb.8b07623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Theresa Cloutier
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chaitanya Sudrik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hasige A. Sathish
- Formulation Sciences, MedImmune LLC, Gaithersburg, Maryland 20878, United States
| | - Bernhardt L. Trout
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Milzetti J, Nayar D, van der Vegt NFA. Convergence of Kirkwood–Buff Integrals of Ideal and Nonideal Aqueous Solutions Using Molecular Dynamics Simulations. J Phys Chem B 2018; 122:5515-5526. [DOI: 10.1021/acs.jpcb.7b11831] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jasmin Milzetti
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287, Darmstadt, Germany
| | - Divya Nayar
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287, Darmstadt, Germany
| | - Nico F. A. van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Center of Smart Interfaces, Technische Universität Darmstadt, Alarich-Weiss-Straße 10, 64287, Darmstadt, Germany
| |
Collapse
|
5
|
Agieienko V, Horinek D, Buchner R. Hydration and self-aggregation of a neutral cosolute from dielectric relaxation spectroscopy and MD simulations: the case of 1,3-dimethylurea. Phys Chem Chem Phys 2017; 19:219-230. [DOI: 10.1039/c6cp07407c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1,3-Dimethylurea irrotationally binds 1–2H2O molecules close to its carbonyl and impedes dynamics of ca. 40 H2O molecules by methyl substituents.
Collapse
Affiliation(s)
- Vira Agieienko
- Department of Physical Chemistry
- Kazan Federal University
- 420008 Kazan
- Russia
- Department of Inorganic Chemistry
| | - Dominik Horinek
- Institut für Physikalische und Theoretische Chemie
- Universität Regensburg
- D-93040 Regensburg
- Germany
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie
- Universität Regensburg
- D-93040 Regensburg
- Germany
| |
Collapse
|
6
|
Chiba S, Furuta T, Shimizu S. Kirkwood–Buff Integrals for Aqueous Urea Solutions Based upon the Quantum Chemical Electrostatic Potential and Interaction Energies. J Phys Chem B 2016; 120:7714-23. [DOI: 10.1021/acs.jpcb.6b05611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Shuntaro Chiba
- Education
Academy of Computational Life Sciences, Tokyo Institute of Technology, J3-141 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Tadaomi Furuta
- School
of Life Science and Technology, Tokyo Institute of Technology, B-62 4259
Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Seishi Shimizu
- York
Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
7
|
Agieienko V, Buchner R. Urea hydration from dielectric relaxation spectroscopy: old findings confirmed, new insights gained. Phys Chem Chem Phys 2016; 18:2597-607. [PMID: 26700870 DOI: 10.1039/c5cp07604h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report results on urea hydration obtained by dielectric relaxation spectroscopy (DRS) in a broad range of concentrations and temperatures. In particular, the effective hydration number and dipole moment of urea have been determined. The observed changes with composition and temperature were found to be insignificant and mainly caused by the changing number density of urea. Similarly, solute reorientation scaled simply with viscosity. In contrast, we find that water reorientation undergoes substantial changes in the presence of urea, resulting in two water fractions. The first corresponds to water molecules strongly bound to urea. These solvent molecules follow the reorientational dynamics of the solute. The second fraction exhibits only a minor increase of its relaxation time (in comparison with pure water) which is not linked to solution viscosity. Its activation energy decreases significantly with urea concentration, indicating a marked decrease of the number of H-bonds among the H2O molecules belonging to this fraction. Noncovalent interactions (NCI) analysis, capable to estimate the strength of the interactions within a cluster, shows that bound water molecules are most probably double-hydrogen bonded to urea via the oxygen atom of the carbonyl group and a cis-hydrogen atom. Due to the increased H-bond strength compared to the water dimer and the rigid position in the formed complex the reorientation of these bound H2O molecules is strongly impeded.
Collapse
Affiliation(s)
- Vira Agieienko
- Department of Physical Chemistry, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russia.
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Deutschland.
| |
Collapse
|
8
|
Ploetz EA, Rustenburg AS, Geerke DP, Smith PE. To Polarize or Not to Polarize? Charge-on-Spring versus KBFF Models for Water and Methanol Bulk and Vapor–Liquid Interfacial Mixtures. J Chem Theory Comput 2016; 12:2373-87. [DOI: 10.1021/acs.jctc.5b01115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elizabeth A. Ploetz
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Ariën S. Rustenburg
- AIMMS
Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical
Sciences, Faculty of Sciences, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Daan P. Geerke
- AIMMS
Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical
Sciences, Faculty of Sciences, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Paul E. Smith
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
9
|
Murakami S, Kinoshita M. Effects of monohydric alcohols and polyols on the thermal stability of a protein. J Chem Phys 2016; 144:125105. [PMID: 27036482 DOI: 10.1063/1.4944680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The thermal stability of a protein is lowered by the addition of a monohydric alcohol, and this effect becomes larger as the size of hydrophobic group in an alcohol molecule increases. By contrast, it is enhanced by the addition of a polyol possessing two or more hydroxyl groups per molecule, and this effect becomes larger as the number of hydroxyl groups increases. Here, we show that all of these experimental observations can be reproduced even in a quantitative sense by rigid-body models focused on the entropic effect originating from the translational displacement of solvent molecules. The solvent is either pure water or water-cosolvent solution. Three monohydric alcohols and five polyols are considered as cosolvents. In the rigid-body models, a protein is a fused hard spheres accounting for the polyatomic structure in the atomic detail, and the solvent is formed by hard spheres or a binary mixture of hard spheres with different diameters. The effective diameter of cosolvent molecules and the packing fractions of water and cosolvent, which are crucially important parameters, are carefully estimated using the experimental data of properties such as the density of solid crystal of cosolvent, parameters in the pertinent cosolvent-cosolvent interaction potential, and density of water-cosolvent solution. We employ the morphometric approach combined with the integral equation theory, which is best suited to the physical interpretation of the calculation result. It is argued that the degree of solvent crowding in the bulk is the key factor. When it is made more serious by the cosolvent addition, the solvent-entropy gain upon protein folding is magnified, leading to the enhanced thermal stability. When it is made less serious, the opposite is true. The mechanism of the effects of monohydric alcohols and polyols is physically the same as that of sugars. However, when the rigid-body models are employed for the effect of urea, its addition is predicted to enhance the thermal stability, which conflicts with the experimental fact. We then propose, as two essential factors, not only the solvent-entropy gain but also the loss of protein-solvent interaction energy upon protein folding. The competition of changes in these two factors induced by the cosolvent addition determines the thermal-stability change.
Collapse
Affiliation(s)
- Shota Murakami
- Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
10
|
Lee ME, Van der Vegt NFA. Molecular Thermodynamics of Methane Solvation in tert-Butanol-Water Mixtures. J Chem Theory Comput 2015; 3:194-200. [PMID: 26627164 DOI: 10.1021/ct600226h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We studied solvation structure and thermodynamics of methane in mixtures of tert-butanol and water using computer simulations. We show that for alcohol mole fractions below 20%, methane is preferentially solvated by hydrated alcohol clusters. Because methane expels water molecules from these clusters, a large endothermic solvent reorganization enthalpy occurs. This process is responsible for the experimentally observed maximum of the heat of methane solvation close to 5% alcohol in the mixture and contributes to a positive entropy change relative to solvation in pure water. Because the structural solvent reorganization enthalpy is enthalpy-entropy compensating, the methane solvation free energy is a smoothly varying function of the alcohol/water solution composition.
Collapse
Affiliation(s)
- Maeng-Eun Lee
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | | |
Collapse
|
11
|
Hajnic M, Osorio JI, Zagrovic B. Interaction preferences between nucleobase mimetics and amino acids in aqueous solutions. Phys Chem Chem Phys 2015. [PMID: 26219945 DOI: 10.1039/c5cp01486g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the paramount importance of protein-nucleic acid interactions in different cellular processes, our understanding of such interactions at the atomistic level remains incomplete. We have used molecular dynamics (MD) simulations and 15 μs of sampling time to study the behavior of amino acids and amino-acid sidechain analogs in aqueous solutions of different mimetics of naturally occurring nucleobases, including dimethylpyridine (DMP) and unsubstituted purine and pyrimidine rings. By using structural and energetic analysis, we have derived preference scales for the interaction of amino acids and their sidechain analogs with different nucleobase mimetics and have exhaustively compared them with each other. A close correspondence with a standard hydrophobicity measure in the case of the pyrimidine mimetic DMP and purines suggests that the hydrophobic effect is the main defining factor behind such interactions. We analyze our findings in the context of the origin of the genetic code and the recently proposed cognate mRNA-protein complementarity hypothesis. Most importantly, we show that unsubstituted purine and pyrimidine rings alone cannot differentiate between predominantly purine- and pyrimidine-coded amino acids, suggesting that for such specificity to exist, it must primarily reside in ring substituents.
Collapse
Affiliation(s)
- Matea Hajnic
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna 1030, Austria.
| | | | | |
Collapse
|
12
|
Nanda R, Rai G, Kumar A. Interesting Viscosity Changes in the Aqueous Urea–Ionic Liquid System: Effect of Alkyl Chain Length Attached to the Cationic Ring of an Ionic Liquid. J SOLUTION CHEM 2015. [DOI: 10.1007/s10953-015-0320-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Holehouse AS, Garai K, Lyle N, Vitalis A, Pappu RV. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus side chain groups to chain expansion via chemical denaturation. J Am Chem Soc 2015; 137:2984-95. [PMID: 25664638 PMCID: PMC4418562 DOI: 10.1021/ja512062h] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In aqueous solutions with high concentrations of chemical denaturants such as urea and guanidinium chloride (GdmCl) proteins expand to populate heterogeneous conformational ensembles. These denaturing environments are thought to be good solvents for generic protein sequences because properties of conformational distributions align with those of canonical random coils. Previous studies showed that water is a poor solvent for polypeptide backbones, and therefore, backbones form collapsed globular structures in aqueous solvents. Here, we ask if polypeptide backbones can intrinsically undergo the requisite chain expansion in aqueous solutions with high concentrations of urea and GdmCl. We answer this question using a combination of molecular dynamics simulations and fluorescence correlation spectroscopy. We find that the degree of backbone expansion is minimal in aqueous solutions with high concentrations of denaturants. Instead, polypeptide backbones sample conformations that are denaturant-specific mixtures of coils and globules, with a persistent preference for globules. Therefore, typical denaturing environments cannot be classified as good solvents for polypeptide backbones. How then do generic protein sequences expand in denaturing environments? To answer this question, we investigated the effects of side chains using simulations of two archetypal sequences with amino acid compositions that are mixtures of charged, hydrophobic, and polar groups. We find that side chains lower the effective concentration of backbone amides in water leading to an intrinsic expansion of polypeptide backbones in the absence of denaturants. Additional dilution of the effective concentration of backbone amides is achieved through preferential interactions with denaturants. These effects lead to conformational statistics in denaturing environments that are congruent with those of canonical random coils. Our results highlight the role of side chain-mediated interactions as determinants of the conformational properties of unfolded states in water and in influencing chain expansion upon denaturation.
Collapse
Affiliation(s)
- Alex S. Holehouse
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130, USA
| | - Kanchan Garai
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130, USA
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad, 500075, India
| | - Nicholas Lyle
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, MO 63130, USA
| | - Andreas Vitalis
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-5807, Zurich, Switzerland
| | | |
Collapse
|
14
|
Lv M, He B, Liu Z, Xiu P, Tu Y. Charge-signal multiplication mediated by urea wires inside Y-shaped carbon nanotubes. J Chem Phys 2014; 141:044707. [DOI: 10.1063/1.4890725] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Mei Lv
- Department of Mathematics, and Institute of Systems Biology, Shanghai University, Shanghai 200444, China
| | - Bing He
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | - Zengrong Liu
- Department of Mathematics, and Institute of Systems Biology, Shanghai University, Shanghai 200444, China
| | - Peng Xiu
- Department of Engineering Mechanics, and Soft Matter Research Center, Zhejiang University, Hangzhou 310027, China
| | - Yusong Tu
- Department of Mathematics, and Institute of Systems Biology, Shanghai University, Shanghai 200444, China
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Ploetz EA, Smith PE. Local Fluctuations in Solution: Theory and Applications. ADVANCES IN CHEMICAL PHYSICS 2013; 153:311-372. [PMID: 24683278 DOI: 10.1002/9781118571767.ch4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Xiu P, Tu Y, Tian X, Fang H, Zhou R. Molecular wire of urea in carbon nanotube: a molecular dynamics study. NANOSCALE 2012; 4:652-658. [PMID: 22159294 DOI: 10.1039/c1nr10793c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We perform molecular dynamics simulations of narrow single-walled carbon nanotubes (SWNTs) in aqueous urea to investigate the structure and dynamical behavior of urea molecules inside the SWNT. Even at low urea concentrations (e.g., 0.5 M), we have observed spontaneous and continuous filling of SWNT with a one-dimensional urea wire (leaving very few water molecules inside the SWNT). The urea wire is structurally ordered, both translationally and orientationally, with a contiguous hydrogen-bonded network and concerted urea's dipole orientations. Interestingly, despite the symmetric nature of the whole system, the potential energy profile of urea along the SWNT is asymmetric, arising from the ordering of asymmetric urea partial charge distribution (or dipole moment) in confined environment. Furthermore, we study the kinetics of confined urea and find that the permeation of urea molecules through the SWNT decreases significantly (by a factor of ∼20) compared to that of water molecules, due to the stronger dispersion interaction of urea with SWNT than water, and a maximum in urea permeation happens around a concentration of 5 M. These findings might shed some light on the better understanding of unique properties of molecular wires (particularly the wires formed by polar organic small molecules) confined within both artificial and biological nanochannels, and are expected to have practical applications such as the electronic devices for signal transduction and multiplication at the nanoscale.
Collapse
Affiliation(s)
- Peng Xiu
- Bio-X Lab, Department of Physics, and Soft Matter Research Center, Zhejiang University, Hangzhou, 310027, China
| | | | | | | | | |
Collapse
|
17
|
Ploetz EA, Smith PE. A Kirkwood-Buff force field for the aromatic amino acids. Phys Chem Chem Phys 2011; 13:18154-67. [PMID: 21931889 DOI: 10.1039/c1cp21883b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a continuation of our efforts to develop a united atom non-polarizable protein force field based upon the solution theory of Kirkwood and Buff i.e., the Kirkwood-Buff Force Field (KBFF) approach, we present KBFF models for the side chains of phenylalanine, tyrosine, tryptophan, and histidine, including both tautomers of neutral histidine and doubly-protonated histidine. The force fields were specifically designed to reproduce the thermodynamic properties of mixtures over the full composition range in an attempt to provide an improved description of intermolecular interactions. The models were developed by careful parameterization of the solution phase partial charges to reproduce the experimental Kirkwood-Buff integrals for mixtures of solutes representative of the amino acid sidechains in solution. The KBFF parameters and simulated thermodynamic and structural properties are presented for the following eleven binary mixtures: benzene + methanol, benzene + toluene, toluene + methanol, toluene + phenol, toluene + p-cresol, pyrrole + methanol, indole + methanol, pyridine + methanol, pyridine + water, histidine + water, and histidine hydrochloride + water. It is argued that the present approach and models provide a reasonable description of intermolecular interactions which ensures that the required balance between solute-solute, solute-solvent, and solvent-solvent distributions is obtained.
Collapse
Affiliation(s)
- Elizabeth A Ploetz
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506-0401, USA
| | | |
Collapse
|
18
|
Smith PE. The effect of urea on the morphology of NaCl crystals: A combined theoretical and simulation study. FLUID PHASE EQUILIBRIA 2010; 290:36-42. [PMID: 20383314 PMCID: PMC2850219 DOI: 10.1016/j.fluid.2009.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
It has been known for over a century that the presence of cosolvents such as urea and formamide can alter the morphology of NaCl crystals grown from solution. To help understand this effect we have been developing a theoretical approach based on the Kirkwood-Buff (KB) theory of solutions, and have combined this with computer simulations of the interation of urea with different crystal faces of NaCl. In this way one can predict the effect of urea on the thermodynamic stability of different NaCl faces, with atomic level detail provided by the simulations. We observe that urea is preferentially excluded from 100 and 111 crystal faces, but is less excluded from 111 faces which present chloride ions at the surface. The results indicate that the 111 face is stabilized in urea solutions and promotes the formation of octahedral over cubic NaCl crystals. The approach is totally general and can be applied to understand a variety of interfacial properties. Furthermore, we apply KB theory to study several other issues regarding the simulation of crystal growth.
Collapse
Affiliation(s)
- Paul E Smith
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506-0401, Tel: 785-532-5109, ,
| |
Collapse
|
19
|
Ploetz EA, Bentenitis N, Smith PE. Developing Force Fields from the Microscopic Structure of Solutions. FLUID PHASE EQUILIBRIA 2010; 290:43. [PMID: 20161692 PMCID: PMC2821164 DOI: 10.1016/j.fluid.2009.11.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We have been developing force fields designed for the eventual simulation of peptides and proteins using the Kirkwood-Buff (KB) theory of solutions as a guide. KB theory provides exact information on the relative distributions for each species present in solution. This information can also be obtained from computer simulations. Hence, one can use KB theory to help test and modify the parameters commonly used in biomolecular studies. A series of small molecule force fields representative of the fragments found in peptides and proteins have been developed. Since this approach is guided by the KB theory, our results provide a reasonable balance in the interactions between self-association of solutes and solute solvation. Here, we present our progress to date. In addition, our investigations have provided a wealth of data concerning the properties of solution mixtures, which is also summarized. Specific examples of the properties of aromatic (benzene, phenol, p-cresol) and sulfur compounds (methanethiol, dimethylsulfide, dimethyldisulfide) and their mixtures with methanol or toluene are provided as an illustration of this kind of approach.
Collapse
Affiliation(s)
| | - Nikolaos Bentenitis
- Department of Chemistry and Biochemistry, Southwestern University, Georgetown, TX 78626
| | - Paul E. Smith
- Department of Chemistry, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
20
|
Chen F, Smith PE. Theory and computer simulation of solute effects on the surface tension of liquids. J Phys Chem B 2008; 112:8975-84. [PMID: 18610955 DOI: 10.1021/jp711062a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A complete description of the thermodynamics of planar mixed solute-solvent interfaces suitable for the analysis of computer simulation data is provided. The approach uses surface probability distributions to characterize the interface regions, coupled with radial distribution functions and the Kirkwood-Buff theory of solutions to characterize the bulk solution properties. The approach is then used to understand the relationship between changes in the surface tension, the degree of surface adsorption or depletion, and the bulk solution properties of two aqueous solute systems. The first, aqueous NaCl solutions, provides an example of a surface excluded solute. The second, aqueous methanol solutions, provides an example of a surface adsorbed solute. The numerical results support the theoretical relationships described here and provide a consistent picture of the thermodynamics of solution interfaces involving any number of components which can be applied to a wide variety of systems.
Collapse
Affiliation(s)
- Feng Chen
- Department of Chemistry, 111 Willard Hall, Kansas State University, Manhattan, Kansas 66506-3701, USA
| | | |
Collapse
|
21
|
Abstract
A series of equations are developed for the study of the effects of cosolvents on the solubility of a solute in mixed solutions where the solute displays a finite solubility. The equations differ depending on the scale used for the solute (and cosolvent) concentrations. The expressions use Kirkwood-Buff integrals to relate the changes in solubility to changes in the local solution composition around the solute and can be applied to study any type of ternary system including electrolyte cosolvents. The expressions provided here differ from previous approaches because of the use of a semi-open ensemble and the extension to finite solute solubilities.
Collapse
Affiliation(s)
- Paul E. Smith
- Department of Chemistry, 111 Willard Hall, Kansas State University, Manhattan, KS 66506-3701, Tel: 785-532-5109, Fax: 785-532-6666,
| | - Robert M. Mazo
- Department of Chemistry, University of Oregon, Eugene, OR 97403-1253,
| |
Collapse
|
22
|
Auton M, Bolen DW, Rösgen J. Structural thermodynamics of protein preferential solvation: Osmolyte solvation of proteins, aminoacids, and peptides. Proteins 2008; 73:802-13. [DOI: 10.1002/prot.22103] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
|
24
|
Zoranić L, Sokolić F, Perera A. Density and energy distribution in water and organic solvents: A molecular dynamics study. J Mol Liq 2007. [DOI: 10.1016/j.molliq.2007.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Pierce V, Kang M, Aburi M, Weerasinghe S, Smith PE. Recent applications of Kirkwood-Buff theory to biological systems. Cell Biochem Biophys 2007; 50:1-22. [PMID: 18043873 PMCID: PMC2566781 DOI: 10.1007/s12013-007-9005-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 11/02/2007] [Indexed: 12/01/2022]
Abstract
The effect of cosolvents on biomolecular equilibria has traditionally been rationalized using simple binding models. More recently, a renewed interest in the use of Kirkwood-Buff (KB) theory to analyze solution mixtures has provided new information on the effects of osmolytes and denaturants and their interactions with biomolecules. Here we review the status of KB theory as applied to biological systems. In particular, the existing models of denaturation are analyzed in terms of KB theory, and the use of KB theory to interpret computer simulation data for these systems is discussed.
Collapse
Affiliation(s)
- Veronica Pierce
- Department of Chemistry, 111 Willard Hall, Kansas State University, Manhattan, KS 66506-3701, USA
| | | | | | | | | |
Collapse
|
26
|
Kokubo H, Rösgen J, Bolen DW, Pettitt BM. Molecular basis of the apparent near ideality of urea solutions. Biophys J 2007; 93:3392-407. [PMID: 17693466 PMCID: PMC2072084 DOI: 10.1529/biophysj.107.114181] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Accepted: 07/16/2007] [Indexed: 11/18/2022] Open
Abstract
Activity coefficients of urea solutions are calculated to explore the mechanism of its solution properties, which form the basis for its well-known use as a strong protein denaturant. We perform free energy simulations of urea solutions in different urea concentrations using two urea models (OPLS and KBFF models) to calculate and decompose the activity coefficients. For the case of urea, we clarify the concept of the ideal solution in different concentration scales and standard states and its effect on our subsequent analysis. The analytical form of activity coefficients depends on the concentration units and standard states. For both models studied, urea displays a weak concentration dependence for excess chemical potential. However, for the OPLS force-field model, this results from contributions that are independent of concentration to the van der Waals and electrostatic components whereas for the KBFF model those components are nontrivial but oppose each other. The strong ideality of urea solutions in some concentration scales (incidentally implying a lack of water perturbation) is discussed in terms of recent data and ideas on the mechanism of urea denaturation of proteins.
Collapse
Affiliation(s)
- Hironori Kokubo
- Department of Chemistry, University of Houston, Houston, Texas, USA
| | | | | | | |
Collapse
|
27
|
Abstract
A force field for the computer simulation of aqueous solutions of amides is presented. The force field is designed to reproduce the experimentally observed density and Kirkwood-Buff integrals for N-methylacetamide (NMA), allowing for an accurate description of the NMA activity. Other properties such as the translational diffusion constant and heat of mixing are also well reproduced. The force field is then extended to include N,N'-dimethylacetamide and acetamide with good success. Analysis of the simulations of low concentrations of NMA in water indicates a high degree of solvation with only 15% of the NMA molecules involved in solute-solute hydrogen bonding. There is only a weak angular dependence of the solute-solute hydrogen bonding interaction with a minimum at an angle of 65 degrees for the N-H and C=O dipole vectors. The models presented here provide a basis for an accurate force field for peptides and proteins.
Collapse
Affiliation(s)
- Myungshim Kang
- Department of Chemistry, Kansas State University, 111 Willard Hall, Manhattan, Kansas 66506-3701, USA
| | | |
Collapse
|
28
|
Stumpe MC, Grubmüller H. Aqueous urea solutions: structure, energetics, and urea aggregation. J Phys Chem B 2007; 111:6220-8. [PMID: 17497766 DOI: 10.1021/jp066474n] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Urea is ubiquitously used as a protein denaturant. To study the structure and energetics of aqueous urea solutions, we have carried out molecular dynamics simulations for a wide range of urea concentrations and temperatures. The hydrogen bonds between urea and water were found to be significantly weaker than those between water molecules, which drives urea self-aggregation due to the hydrophobic effect. From the reduction of the water exposed urea surface area, urea was found to exhibit an aggregation degree of ca. 20% at concentrations commonly used for protein denaturation. Structurally, three distinct urea pair conformations were identified and their populations were analyzed by translational and orientational pair distribution functions. Furthermore, urea was found to strengthen water structure in terms of hydrogen bond energies and population of solvation shells. Our findings are consistent with a direct interaction between urea and the protein as the main driving force for protein denaturation. As an additional, more indirect effect, urea was found to enhance water structure, which would suggest a weakening of the hydrophobic effect.
Collapse
Affiliation(s)
- Martin C Stumpe
- Theoretical and Computational Biophysics Department, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | |
Collapse
|
29
|
Kokubo H, Pettitt BM. Preferential solvation in urea solutions at different concentrations: properties from simulation studies. J Phys Chem B 2007; 111:5233-42. [PMID: 17447807 PMCID: PMC2583237 DOI: 10.1021/jp067659x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We performed molecular dynamics simulations of urea solutions at different concentrations with two urea models (OPLS and KBFF) to examine the structures responsible for the thermodynamic solution properties. Our simulation results showed that hydrogen-bonding properties such as the average number of hydrogen bonds and their lifetime distributions were nearly constant at all concentrations between infinite dilution and the solubility limit. This implies that the characterization of urea-water solutions in the molarity concentration scale as nearly ideal is a result of facile local hydrogen bonding rather than a global property. Thus, urea concentration does not influence the local propensity for hydrogen bonds, only how they are satisfied. By comparison, the KBFF model of urea donated fewer hydrogen bonds than OPLS. We found that the KBFF urea model in TIP3P water better reproduced the experimental density and diffusion constant data. Preferential solvation analysis showed that there were weak urea-urea and water-water associations in OPLS solution at short distances, but there were no strong associations. We divided urea molecules into large, medium, and small clusters to examine fluctuation properties and found that any particular urea molecule did not stay in the same cluster for a long time. We found neither persistent nor large clusters.
Collapse
Affiliation(s)
- Hironori Kokubo
- Authors to whom correspondence should be addressed. E-mail: ;
| | | |
Collapse
|
30
|
Weerasinghe S, Smith PE. A Kirkwood-Buff derived force field for the simulation of aqueous guanidinium chloride solutions. J Chem Phys 2006; 121:2180-6. [PMID: 15260772 DOI: 10.1063/1.1768938] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A force field for the simulation of aqueous guanidinium chloride solutions is presented. The force field was parametrized to reproduce the experimental density and Kirkwood-Buff integrals as a function of composition. Consequently, a reasonable description of the salt activity is obtained. The model also performs well for other properties such as the relative permittivity and enthalpy of mixing.
Collapse
|
31
|
Jung YM, Czarnik-Matusewicz B, Kim SB. Characterization of Concentration-Dependent Infrared Spectral Variations of Urea Aqueous Solutions by Principal Component Analysis and Two-Dimensional Correlation Spectroscopy. J Phys Chem B 2004. [DOI: 10.1021/jp049150c] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Young Mee Jung
- Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Pohang 790−784, Korea and Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Boguslawa Czarnik-Matusewicz
- Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Pohang 790−784, Korea and Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Seung Bin Kim
- Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Pohang 790−784, Korea and Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
32
|
van der Vegt NFA, van Gunsteren WF. Entropic Contributions in Cosolvent Binding to Hydrophobic Solutes in Water. J Phys Chem B 2003. [DOI: 10.1021/jp030532c] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. F. A. van der Vegt
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology Zürich, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - W. F. van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology Zürich, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| |
Collapse
|
33
|
Weerasinghe S, Smith PE. A Kirkwood–Buff derived force field for sodium chloride in water. J Chem Phys 2003. [DOI: 10.1063/1.1622372] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
34
|
Weerasinghe S, Smith PE. Kirkwood–Buff derived force field for mixtures of acetone and water. J Chem Phys 2003. [DOI: 10.1063/1.1574773] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|