• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643690)   Today's Articles (474)   Subscriber (50604)
For: Filatov M, Cremer D. Analytic energy derivatives for regular approximations of relativistic effects applicable to methods with and without correlation corrections. J Chem Phys 2003. [DOI: 10.1063/1.1561046] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
Number Cited by Other Article(s)
1
Rusakov YY, Rusakova IL. Efficient J-oriented tin basis sets for the correlated calculations of indirect nuclear spin-spin coupling constants. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021;59:713-722. [PMID: 33439515 DOI: 10.1002/mrc.5132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
2
Rusakova IL, Rusakov YY. Quantum chemical calculations of 77 Se and 125 Te nuclear magnetic resonance spectral parameters and their structural applications. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021;59:359-407. [PMID: 33095923 DOI: 10.1002/mrc.5111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
3
Zou W, Guo G, Suo B, Liu W. Analytic Energy Gradients and Hessians of Exact Two-Component Relativistic Methods: Efficient Implementation and Extensive Applications. J Chem Theory Comput 2020;16:1541-1554. [DOI: 10.1021/acs.jctc.9b01120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
4
Yoshizawa T, Zou W, Cremer D. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method. J Chem Phys 2017;146:134109. [DOI: 10.1063/1.4979499] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
5
Nakajima Y, Seino J, Nakai H. Implementation of Analytical Energy Gradient of Spin-Dependent General Hartree-Fock Method Based on the Infinite-Order Douglas-Kroll-Hess Relativistic Hamiltonian with Local Unitary Transformation. J Chem Theory Comput 2016;12:2181-90. [PMID: 27045757 DOI: 10.1021/acs.jctc.5b00928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
6
Cremer D, Zou W, Filatov M. Dirac‐exact relativistic methods: the normalized elimination of the small component method. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2014. [DOI: 10.1002/wcms.1181] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
7
Aucar GA. Toward a QFT-based theory of atomic and molecular properties. Phys Chem Chem Phys 2014;16:4420-38. [DOI: 10.1039/c3cp52685b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
8
Nakajima Y, Seino J, Nakai H. Analytical energy gradient based on spin-free infinite-order Douglas-Kroll-Hess method with local unitary transformation. J Chem Phys 2013;139:244107. [DOI: 10.1063/1.4850638] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]  Open
9
Analytical Nuclear Gradients of Density-Fitted Dirac–Fock Theory with a 2-Spinor Basis. J Chem Theory Comput 2013;9:4300-3. [DOI: 10.1021/ct400719d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
10
Zou W, Filatov M, Cremer D. Analytic calculation of second-order electric response properties with the normalized elimination of the small component (NESC) method. J Chem Phys 2012;137:084108. [DOI: 10.1063/1.4747335] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]  Open
11
Zou W, Filatov M, Cremer D. Development, Implementation, and Application of an Analytic Second Derivative Formalism for the Normalized Elimination of the Small Component Method. J Chem Theory Comput 2012;8:2617-29. [DOI: 10.1021/ct300127e] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
12
Filatov M, Zou W, Cremer D. Analytic Calculation of Isotropic Hyperfine Structure Constants Using the Normalized Elimination of the Small Component Formalism. J Phys Chem A 2012;116:3481-6. [DOI: 10.1021/jp301224u] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
13
Saue T. Relativistic Hamiltonians for chemistry: a primer. Chemphyschem 2011;12:3077-94. [PMID: 22076930 DOI: 10.1002/cphc.201100682] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Indexed: 11/06/2022]
14
Zou W, Filatov M, Cremer D. Development and application of the analytical energy gradient for the normalized elimination of the small component method. J Chem Phys 2011;134:244117. [PMID: 21721622 DOI: 10.1063/1.3603454] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]  Open
15
Zou W, Filatov M, Cremer D. An improved algorithm for the normalized elimination of the small-component method. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-1007-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
16
FILATOV MICHAEL, CREMER DIETER. On the physical meaning of the ZORA Hamiltonian. Mol Phys 2009. [DOI: 10.1080/0026897031000137670] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
17
Matveev AV, Rösch N. Atomic approximation to the projection on electronic states in the Douglas-Kroll-Hess approach to the relativistic Kohn-Sham method. J Chem Phys 2008;128:244102. [DOI: 10.1063/1.2940352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
18
Pantazis DA, Chen XY, Landis CR, Neese F. All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. J Chem Theory Comput 2008;4:908-19. [DOI: 10.1021/ct800047t] [Citation(s) in RCA: 872] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
19
Michauk C, Gauss J. Perturbative treatment of scalar-relativistic effects in coupled-cluster calculations of equilibrium geometries and harmonic vibrational frequencies using analytic second-derivative techniques. J Chem Phys 2007;127:044106. [PMID: 17672680 DOI: 10.1063/1.2751161] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
20
Kutzelnigg W, Liu W. Quasirelativistic theory equivalent to fully relativistic theory. J Chem Phys 2005;123:241102. [PMID: 16396527 DOI: 10.1063/1.2137315] [Citation(s) in RCA: 348] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
21
Filatov M, Cremer D. Calculation of spin-densities within the context of density functional theory. The crucial role of the correlation functional. J Chem Phys 2005;123:124101. [PMID: 16392469 DOI: 10.1063/1.2047467] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]  Open
22
Filatov M, Cremer D. Connection between the regular approximation and the normalized elimination of the small component in relativistic quantum theory. J Chem Phys 2005;122:064104. [PMID: 15740364 DOI: 10.1063/1.1844298] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
23
Filatov M, Cremer D. A gauge-independent zeroth-order regular approximation to the exact relativistic Hamiltonian—Formulation and applications. J Chem Phys 2005;122:44104. [PMID: 15740232 DOI: 10.1063/1.1839856] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
24
Filatov M, Cremer D. Revision of the Dissociation Energies of Mercury Chalcogenides?Unusual Types of Mercury Bonding. Chemphyschem 2004;5:1547-57. [PMID: 15535554 DOI: 10.1002/cphc.200301207] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
25
Filatov M, Cremer D. Relativistically corrected hyperfine structure constants calculated with the regular approximation applied to correlation corrected ab initio theory. J Chem Phys 2004;121:5618-22. [PMID: 15366984 DOI: 10.1063/1.1785772] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]  Open
26
Filatov M, Cremer D. Calculation of indirect nuclear spin–spin coupling constants within the regular approximation for relativistic effects. J Chem Phys 2004;120:11407-22. [PMID: 15268175 DOI: 10.1063/1.1752876] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]  Open
27
Filatov M, Cremer D. Representation of the exact relativistic electronic Hamiltonian within the regular approximation. J Chem Phys 2003. [DOI: 10.1063/1.1623473] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
28
Filatov M, Cremer D. Calculation of electric properties using regular approximations to relativistic effects: The polarizabilities of RuO4, OsO4, and HsO4 (Z=108). J Chem Phys 2003. [DOI: 10.1063/1.1580473] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
29
On the binding of carbonyl to a single palladium atom. Chem Phys Lett 2003. [DOI: 10.1016/s0009-2614(03)00545-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA